多壁碳奈管在溶劑與玻璃中的吸收光譜

陳惠玉 李偉

中原大學物理系

本論文旨在探討多壁碳奈管在紫外、可見光、近紅外光區的吸收光譜;藉由 多種化學溶劑與基質分離技術,我們對碳奈管懸浮液與摻雜碳奈管玻璃進行光譜 量測,以觀察多壁碳奈管在不同環境的吸收特性。實驗結果顯示:碳奈管因溶劑 效應所造成的近紅外吸收波長略有不同,但其位置與半導體性單壁碳奈管相近; 而在基質分離樣品中,我們成功地量得多壁碳奈管在可見光區的吸收帶,其波長 位置與金屬性單壁碳奈管相近。

關鍵字:碳奈管、基質分離、吸收光譜

前言

自從 1991 年碳奈管 (carbon nanotubes) 被發 現以來(Iijima, 1991),因為它獨具的物理與化學 特性,吸引了眾多學者相繼投入這類新興材料的研 究,近十年間除了理論上的突破外,實驗上的研究 成果也頗爲豐碩(Reich, 2002)。碳奈管基本上可 分為多壁與單壁碳奈管兩種結構,其中單壁碳奈管 又可以依據其晶格的螺旋性來決定導電性的好 壞;但對於結構複雜的多壁碳奈管而言,就沒有如 此明顯的論點來判斷其電性。本實驗室自 1998 年 即嘗試在液晶中摻雜多壁碳奈管,以探討該混合材 料的非線性光學效應(何樹林,1999);現階段本 團隊的焦點已由光折變光柵轉移至光導電性(張智 超、黃建斯和李偉,2002),以及同材料作為液晶 顯示器元件的光電特性(王峻禹和李偉,2002)。 在此類的研究主題中(王峻禹等人,2002;何樹林, 1999;張智超等人, 2002; Lee, and Chen, 2002; Lee, Chen, and Yeh, 2002 ; Lee, and Chiu, 2001 ; Lee, and Yeh, 2001 ; Lee, W., Yeh, Chang, and Lee, C. -C., 2001), 摻雜物往往會對整個樣品的性能具有舉足

輕重的影響,因此我們迫切希望進一步了解本實驗 室所採用的多壁(multiwall)碳奈管(1998 年購自 SES Research)在光學上的特性;參考過去的文獻 對於碳奈管吸收光譜(absorption spectra)的量測 大多是在紅外光波段,對於可見光區以及紫外部分 的研究較少(Brennan, Coleman, in het Panhuis, Marty, Byrne, and Blau, 2001; Jacquemin, Kazaoui, Yu, Hassanien, Minami, Kataura, and Achiba, 2000; Jost, Gorbunov, Pompe, Pichler, Friedlein, Knupfer, Reibold, Bauer, Dunsch, Golden, and Fink, 1999; Kataure, Kumazawa, Maniwa, Umezu, Suzuki, Ohtsuka, and Achiba, 1999; Vivien, Anglaret, Riehl, Hache, Bacou, Andrieux, Lafonta, Journet, Goze, Brunet, and Bernier, 2000; Wang, Huang, Yang, Gong, Shi, Zhou, Qiang, and Gu, 2000)。

如果就現有的相關文獻作一整理, 吾人將不難 發現供光譜測量的碳奈管樣品在製備上主要分為 兩類-懸浮溶液(suspensions)與薄膜(thin films) 樣品, 前者會因溶劑在可見及紫外區的特性 (characteristic)吸收而妨礙碳奈管在該波段的吸 收觀察;藉由這些研究所得結果,大致上可獲知單 壁碳奈管在此懸浮樣品中的吸收特徵約出現在 729 nm 及 820 nm 的位置(Brennan et al., 2001; Vivien et al., 2000; Wang et al., 2000);後者則因薄膜在可見 光區的穿透度不高以及散射太強導致碳奈管的吸 收特徵不甚明顯,因此利用此法所製作的樣品僅可 以在近紅外及紅外光區得到較易觀察的吸收特徵 (Jacquemin et al., 2000)。在本論文中我們除了 利用碳奈管懸浮液作為我們的樣品外,還引進基質 分離(matrix isolation)的方式,觀察多壁碳奈管 在不同溶劑(solvents)與玻璃(glass)中的光吸 收特性,以幫助我們更了解多壁碳奈管的光譜性 質。藉由本論文所提出的實驗方法,我們可以成功 地測量到多壁碳奈管在紫外、可見及近紅外光區的 吸收特徵,這些吸收峰分別落在276 nm、758 nm 以及1000 nm 左右;且不論溶劑系統抑或基質分離 樣品,我們都可以獲得相同的實驗結果。

實驗方法

本實驗中主要使用到的開口型(open)多壁碳 奈管是由 SES Research 所生產,其純度為 99.9%, 由 18-25 石墨層組合而成,內直徑大約為 2-3 nm。 光譜量測的工具為 Shimadzu 公司製造、型號 UV-1601PC 的光譜分析儀(spectrophotometer),所 測量的波長範圍為 190-1100 nm,其操作係利用 RS232 與電腦連結,配合軟體 UVPC(版本為 3.9), 直接利用電腦來作控制以及分析。主要的實驗內容 分成兩大部分來進行:

-、懸浮液樣品的製備

爲了比較並探討不同溶劑對碳奈管吸收光譜 所產生的效應,我們使用了四種不同的液體作為本 實驗中的溶劑,分別是:正己烷(*n*-hexane,C₆H₁₂, 試藥級)、乙醇(ethanol,C₂H₅OH,試藥級)、二 甲基甲醯胺(*n*,*n*-dimethylformamide,簡稱 DMF, HCON(CH₃)₂,試藥級)以及四氯化碳(carbon tetrachloride,CCl₄,試藥級)。由於碳奈管不易溶 解於化學溶劑中,所以我們僅量取微量的碳奈管, 並利用試管震盪器(IKA Mini Shaker MS-1)以及 超音波震盪器攪動,使碳奈管得以均匀散佈在溶劑 中,最後將形成的懸浮液盛於長度為 10 mm 的石 英容器(cuvette)中進行吸收光譜的測量,並且將 所得結果與純溶劑的吸收光作比較。

二、基質分離樣品的製備

一般傳統的基質分離技術係採用造成光譜位 移(spectral shift)較小的低溫惰性元素,如為冰或 氦冰,此處我們選擇氧化硼玻璃(B₂O₃-⅔H₂O)作 爲碳奈管的基質,因爲利用玻璃材料所製作的樣品 在整個製程上較爲容易,同時也可以在室溫下進行 量測,故有其優點(Lee, and Wdowiak, 1993)。首 先我們在硼酸粉末中摻入極微量的碳奈管,利用震 盪 研 磨 機 (International Crystal Laboratories, 0013-2485)將兩者均勻混合,混合後的粉末置於 石英基板(substrate)上加熱至210 °C,當粉末由 白色轉爲透明黏稠狀,隨即將樣品移至兩鐵板間令 其快速降溫,以預防碳奈管因硼酸的流動、固化而 聚集,造成其不均勻分佈的現象。我們將製好的樣 品擺放入光譜儀中測量吸收光譜,並將所得的結果 與前述懸浮液樣品作比較。

結果與討論

碳奈管大致上可以區分成多壁與單壁 (singlewall)碳奈管,其中單壁碳奈管可利用螺旋 向量(chiral vector)來獲知其電性;即金屬或者是

半導體物質。螺旋向量的表示式為 $\vec{C} = n\hat{a}_1 + m\hat{a}_2$, 當 2n + m = 3q 且 q 為整數時即代表此單壁管是屬 於金屬物質,反之則為半導體物質(Satio, Fujita, Dresselhaus, G., and Dresselhaus, M. S., 1992); 而當 單壁碳奈管為半導體時,吸收特徵出現的位置會隨 著管半徑的減少而有藍位移的現象產牛(Lee, and Chen, 2002)。本文主要研究的對象是多壁碳奈管, 此類的研究在過去的文獻中較少見,因爲多壁碳奈 管的結構相較於單壁碳奈管來說更為複雜,電子特 性也無法像單壁碳奈管一樣有一套簡易的法則可 以用以判斷,因此對整個吸收光譜的研究而言較缺 乏理論的基礎。不過參考過去的文獻,我們發現了 兩種有關多壁碳奈管電子結構的說法:(1)多層碳 奈管大多數皆屬於金屬特性;(2)多層碳奈管的電 子特性可由最外層的管壁結構判斷,方法與單壁碳 奈管相同 (Hassanien, Tokumoto, Ohshiam, Kuriki, Ikazaki, Uchida, and Yumura, 1999)。在此我們對上 述兩種說法採保留的態度,並希望藉由進一步的研 究進行討論。

—丶多壁碳奈管懸浮液樣品的吸收光譜

就多壁碳奈管懸浮液吸收光譜的量測而言,我 們初步所獲得的光譜,其吸收特徵(feature)出現 的(波長)位置皆不明顯,主要的原因除了有背景 的吸收外,最嚴重的影響因素乃是因散射 (scattering)所損失的能量太多。眾所皆知碳奈管 非常不易溶於大多數溶劑,因此當我們努力使碳奈 管均匀且無序地散佈在溶劑中時,往往會造成散射 的加大,使碳奈管吸收特徵的頻寬與散射所造成的 消散(extinction)曲線重疊,這便是我們直接量測 到的吸收光譜。為了解決這個問題並使我們的數據 更有意義,我們將量測所得的光譜減去溶劑本身的 吸收以及因射散所造成的能量損耗;其中因散射所 形成的「吸收」可用下式來表示:

$$A = a\lambda^n \tag{1}$$

此方程式是就吸收譜中確認絕無特性吸收的波長 區間,利用最小平方法(least squares)所找出的曲 線擬合 (fitting) 趨勢; A 表示吸收係數, λ 為吸收 波長, n 及 a 為經最小平方法所求出的常數。原始 光譜在扣除上述兩個影響因素後,我們可以獲得如 圖1的吸收光譜。結果顯示在扣除溶劑吸收與散射 所造成的影響後,多壁碳奈管在四種不同溶劑中主 要的吸收特徵分別出現在 1050 nm (二甲基甲醯 胺)、1000 nm(正己烷)、996 nm(四氯化碳)以 及 962 nm (乙醇) 的位置。其中碳奈管在醇類溶 劑中會因溶劑的影響而產生溶劑效應 (solvent effects),使其吸收特徵出現的位置較他種溶劑有藍 移(blue shift)的現象;的確,除了在乙醇中所觀 察到的 962 nm 外,我們也在以甲醇(methanol) 為溶劑的懸浮液中觀察到位於 963 nm 的主要吸 收。我們將所獲得的結果與之前針對單壁碳奈管的 研究文獻比較,當單壁碳奈管屬於半導體性物質時 在 1033 nm 或是 953 nm 具有明顯的吸收特徵 (Brennan et al., 2001; Jacquemin et al., 2000; Jost et al., 1999; Kataure et al., 1999; Vivien et al., 2000; Wang et al., 2000), 意味著我們所使用的多壁碳奈 管可能也具有半導體性。

圖1 多壁碳奈管之吸收光譜

註:由碳奈管懸浮液吸收光譜減去溶劑吸收光譜後,再利用最小平方法找出因散射等所造成的背景消散 曲線並扣除之。

由碳的基本特性我們知道它會具有兩種不同 的鍵結,一種是常出現於一般四族元素-如鑽石-中的 sp^3 ,另一種則是在具有六角晶格結構-如石 墨-中的 sp^2 ;對我們所研究的碳奈管來說,它也 具有如石墨的鍵結方式,所以當碳奈管中碳原子受 光的激發,便會使最外層電子有機會躍遷至另一較 高能階,也就是 π - π *的躍遷。根據 1998 年 Pichler 等人的研究(Pichler, Knupfer, Golden, Fink, Rinzler, and Smalley, 1998),單壁碳奈管發生 π - π *躍遷時 會造成三個在紫外區域的吸收峰,分別為 288 nm、

105 nm 及 84 nm 的位置; 之後 2000 年 Hiroki 等人 將多層的碳奈管掺入 PPV (*p*-phenylene vinylene) 中量得多壁碳奈管在 263 nm 的位置有一吸收峰 (Ago, Shaffer, Ginger, Windle, and Friend, 2000)。 在我們的實驗測量中,當除去溶劑吸收以及散射效 應後,可由圖 2 中看出我們的多壁碳奈管在紫外光 區的吸收特徵主要出現在 276 nm 的位置,此特徵 可斷定是最外層結構中電子由π軌域躍遷至π*軌域 所造成的吸收。

圖 2 碳奈管分別在 (a) CCl₄ (b) n-hexane (c) DMF (d) ethanol 四種溶劑中的紫外光區吸收光譜

註:點線代表溶劑吸收;虛線代表多壁碳奈管懸浮液吸收;實線代表多壁碳奈管的吸收。

二、多壁碳奈管基質分離樣品的吸收光 譜

在這部分的實驗中,我們希望藉由氧化硼玻璃 在可見光區幾無吸收的特性,來尋找多壁碳奈管在 這個範圍的吸收特徵。圖 3 是碳六十 (C_{60}) 被封 於氧化硼玻璃中的吸收光譜,此光譜與文獻上所提 供的碳六十光譜相仿 (Leach, Vervloet, Despres, Breheret, Hare, Dennis, Kroto, Taylor, and Walton, 1992),因此藉由兩者的比較,我們可以確認利用 基質分離的方式來製作樣品並量測其吸收光譜的 方式是可行的。圖 4 所示為多壁碳奈管封於氧化硼 玻璃中在可見及近紅外光區的吸收光譜,吾人可以 觀察到多壁碳奈管在 758 nm 的位置有一吸收特 徵;注意在吸收特徵附近的小震盪源自氧化硼玻璃 厚度所造成的的干涉現象,利用圖形所呈現出的干 涉現象大略可以計算出樣品的厚度為 12µm。由於 樣品的厚度會與吸收係數呈一線性正比的關係,所 以在作定量的分析上來說,厚度的訊息就變得相當 重要了,尤其樣品厚度的大小也會影響吸收波長的 位移 (Zeng, Sun, Segawa, Lin, Mao, Xu, and Tang, 2000),所以當我們在量測樣品吸收光譜時,必須 將此因素加入討論;另外,強烈的干涉現象使得 800 nm 以後的波長範圍看不見有明顯的吸收峰存 在。由文獻上可以發現當單壁碳奈管屬於金屬性 時,吸收峰出現在約 650 nm 至 750 nm 間 (Jacquemin et al., 2000; Jost et al., 1999; Kataure et al., 1999; Wang et al., 2000), 若據此與我們所得的 結果比較,可發現封在氧化硼玻璃中的多壁碳奈管 的吸收光譜有紅移(red shift)的現象(Lee et al., 2002),原因之一可能是對具有相同纏繞方式的多 **壁碳奈管來說,其直徑會大於單層的碳奈管,使多** 壁碳奈管吸收峰波長往紅偏移;另一個造成紅移的 原因,可能來自於碳奈管在液態及固態行為中的不 同,因爲當碳奈管封入氧化硼玻璃中時,有可能使 碳奈管的某些鍵結打斷並與氧化硼玻璃網絡 (networks) 形成較低能量的另一種化學鍵結,當 電子受到光的激發時,或許只需要較少的能量便可 以造成躍遷,使得我們所量測到的吸收光譜相較於 懸浮液樣品有了紅移的現象。同樣地,我們可獲得 基質分離樣品在紫外光區的吸收特徵,約略出現在 265 nm 左右,如圖五所示,此吸收特徵主要是來 自於π-π*躍遷所造成。

- 圖 3 利用基質分離的方式將 C₆₀ 封於氧化硼玻璃中所量得的吸收光譜
- 註:此吸收光譜已經扣除了因散射造成的消散曲線;插圖則是量到的原始圖形,點線為單片石英玻璃的 吸收光譜,實線是 Cao 封於氧化硼玻璃中的吸收光譜。

- 圖 4 多壁碳奈管封於氧化硼玻璃中在可見及近紅外光區的吸收光譜
- 註:插圖的部分是將吸收值的座標放大後所得的結果,由插圖可以明顯地看出在 758 nm 左右有一吸收峰 存在,此爲多壁碳奈管的特性吸收。

圖 5 封於氧化硼玻璃中多層碳奈管在紫外光區的吸收光譜

註:圖中的曲線已經是減去 background 後的結果;插圖的部分是直接由光譜儀量得的結果,可以發現一個相當寬的吸收峰存在於 265 nm 左右。

結論

整個報告中我們運用了兩種完全不同的樣品 製作技術來量測多壁碳奈管在近紅外、可見光及紫 外光區的吸收。由四種不同懸浮液樣品的近紅外吸 收,我們觀察到碳奈管因溶劑效應所造成的吸收位 移各有不同一這些吸收帶(bands)波長位置與半 導體性單壁碳奈管相近-同時因碳奈管**π**到**π***軌域 的躍遷,懸浮液樣品也清楚地呈現出紫外光區的吸 收峰。另外,在運用基質分離的方法所製作的樣品 中,我們利用氧化硼玻璃在可見光及紫外光區低吸 收的特性,成功地量得多壁碳奈管在可見光區的吸 收峰,配合其他文獻的結果得知我們所使用的多壁 碳奈管具有與金屬性單壁碳奈管相近的吸收位 置。由於多壁碳奈管的結構相較於單壁碳奈管而言 複雜許多,許多有關碳奈管的理論假設以及實驗結 果都以單壁碳奈管為主要的研究對象;至於多壁碳 奈管的導電特性則是眾說紛紜,因此在本報告中我 們並無法明確地指出我們所使用的多壁碳奈管的 電性為何?僅可利用文獻上對於單壁碳奈管的研 究結果來作一對照,兩者光譜的相依性則必須仰賴 進一步的研究。

由這兩類不同樣品所量得的吸收光譜的結果 來看,懸浮液的的光譜圖必須加以考慮許多變因, 例如:溶劑本身的吸收、溶劑與碳奈管間的交互作 用、溶劑所引起的溶劑效應、碳奈管在溶劑中不夠 穩定而發生聚集(aggregation)等問題,都會影響 所測量到的吸收光譜,造成在作進一步討論時產生 了許多的問題,而這些問題也都可能發生在基質分 離的樣品,故在本專題中吾人必須運用一些實驗上 與分析上的技巧,試圖去解決並控制其中的一些變 因。

由於我們已經驗證了可以利用基質分離的方 式來量測多壁碳奈管在可見及紫外部分的吸收光 譜,所以接下來我們便可以利用高能量的光(如同 步輻射光)來使碳奈管最外層的電子游離,使得多 壁碳奈管處於游離態,以量測多碳奈管在游離態下的吸收光譜。儘管在2002年底Weisman等人已經發表有關於如何有效利用單壁碳奈管的螢光光譜來檢測其結構(Bachilo, Strano, Kittrell, Hauge,

Smalley, and Weisman, 2002),但對於理論較複雜的 多壁碳奈管來說卻還有許多神秘的地方,或許觀察 多壁碳奈管的螢光光譜也是刻不容緩的工作。

參考文獻

- 王峻禹、李偉 (2002,12 月): 扭轉線狀液晶盒摻雜碳 奈米固體之光電特性。論文發表於 2002 台灣光電 研討會。台北市:國立台灣科技大學。
- 何樹林 (1999):線狀液晶摻雜碳六十的光耦合增益。中 壢市:中原大學碩士論文。
- 張智超、黃建斯、李偉 (2002,12 月):向列型液晶掺 雜碳奈管的光致電流。論文發表於 2002 台灣光電 研討會。台北市:國立台灣科技大學
- Ago, H., Shaffer, M. S. P., Ginger, D. S., Windle, A. H., & Friend, R. H. (2000). Electronic interaction between photoexcited poly (p-phenylene vinylene) and carbon nanotubes. *Physics Review B*, 61, 2286-2290.
- Bachilo, S. M., Strano, M. S., Kittrell, C., Hauge, R. H., Smalley, R. E., & Weisman, R. B. (2002). Structure-assigned optical spectra of single-walled carbon nanotubes. *Science*, 298, 2361-2366.
- Brennan, M. E., Coleman, J. N., in het Panhuis, M., Marty, L., Byrne, H. J., & Blau, W. J. (2001). Nonlinear photoluminescence in multiwall carbon nanotubes. *Synthetic Metals*, 119, 641-642.
- Hassanien, A., Tokumoto, M., Ohshiam, S., Kuriki, Y., Ikazaki, F., Uchida, K., & Yumura, M. (1999). Geometrical structure and electronic properties of atomically resolved multiwall carbon nanotubes. *Applied Physics Letters*, 75, 2755-2757.
- Iijima, S. (1991). Helical microtubles of graphitic carbon. *Nature*, *354*, 220-222.
- Jacquemin, R., Kazaoui, S., Yu, D., Hassanien, A., Minami, N., Kataura, H., & Achiba, Y., (2000). Doping mechanism in single-wall carbon nanotubes studies by optical absorption. *Synthetic Metals*, 115, 283-287.
- Jost, O., Gorbunov, A. A., Pompe, W., Pichler, T., Friedlein, R., Knupfer, M., Reibold, M., Bauer, H.-D., Dunsch, L., Golden, M. S., & Fink, J. (1999). Diameter grouping in bulk samples of single-walled carbons nanotubes from optical absorption spectroscopy. *Applied Physics Letters*, 75, 2217-2219.
- Kataure, H., Kumazawa, Y., Maniwa, Y., Umezu, I., Suzuki, S., Ohtsuka, Y., & Achiba, Y. (1999). Optical properties of single-walled carbon nanotubes. *Synthetic Metals*, 103, 2555-2558.
- Leach, S., Vervloet, M., Despres, A., Breheret, E., Hare, J. P., Dennis, T. J., Kroto, H. W., Taylor, R., & Walton,

D. R. M. (1992). Electronic spectra and transitions of the fullerene C60. *Chemical Physics*, 160, 451-466.

- Lee, M.-W., & Chen, Y.-C. (2002). Far-infrared to visible transmission spectroscopy of single-wall carbon nanotubes. *Japanese Journal of Applied Physics*, *41*, 4663-4665.
- Lee, W., & Chen, H.-C. (2002). Diffraction by photoinduced permanent gratings in nanotube-doped liquid crystals. *Journal of Physics D: Applied Physics*, 35, 2260-2263.
- Lee, W., Chen, H.-Y., & Yeh, S.-L. (2002). Surface-sustained permanent gratings in nematic liquid crystals doped with carbon nanotubes. *Optics Express*, 10, 482-486.
- Lee, W., & Chiu, C.-S. (2001). Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes. *Optics Letters, 26*, 521-523.
- Lee, W., & Wdowiak, T. J. (1993). Laboratory spectra of polycyclic aromatic hydrocarbon ions and the interstellar extinction curve. *The Astrophysical Journal*, *410*, L127-L130.
- Lee, W., Yeh, S.-L., Chang, C.-C., & Lee, C.-C. (2001). Beam coupling in nanotube-doped nematic liquid-crystal films. *Optics Express*, 9, 791-795.
- Lee, W., & Yeh, S.-L. (2001). Optical amplification in nematic doped with carbon nanotubes. *Applied Physics Letters*, 79, 4488-4490.
- Pichler, T., Knupfer, M., Golden, M. S., Fink, J., Rinzler, A., & Smalley, R. E. (1998). Localized and delocalized electronic states in single-wall carbon nanotubes. *Physics Review Letters*, 80, 4729-4732.
- Reich, S. (2002). *Carbon Nanotubes*. Cambridge: Wiley-VCH.
- Saito, R., Fujita, M., Dresselhaus G., & Dresselhaus, M. S. (1992). Electronic structure of chiral graphene tubules. *Applied Physics Letters*, 60, 2204-2206.
- Vivien, L., Anglaret, E., Riehl, D., Hache, F., Bacou, F., Andrieux, M., Lafonta, F., Journet, C., Goze, C., Brunet, M., & Bernier, P. (2000). Optical limiting properties of singlewall carbon nanotubes. *Optics Communication*, 174, 271-275.

- Wang, S., Huang, W., Yang, H., Gong, Q., Shi, Z., Zhou, X., Qiang, D., & Gu, Z. (2000). Large and ultrafast third-order optical non-linearity of single-wall carbon nanotubes at 820 nm. *Chemical Physics Letters*, 320, 411-414.
- Zeng, H., Sun, Z., Segawa, Y., Lin, F., Mao, S., Xu, Z., & Tang, S. H. (2000). Optical properties of microstructues in fullerene-doped optical glasses. *Journal of Physics D: Applied Physics*, 33, L93-L97.

作者簡介

陳惠玉,中原大學應用物理研究所碩班生

Hui-Yu Chen is a graduate student in the Department of Physics at Chung Yuan Christian University. e-mail: g9201203@cycu.edu.tw

李偉,中原大學物理系副教授

Wei Lee is an Associate Professor in the Department of Physics at Chung Yuan Christian University. e-mail: wlee@phys.cycu.edu.tw

> 收稿日期:92年01月18日 修正日期:92年05月31日 接受日期:92年06月06日

Absorption Spectra of Multiwall Carbon Nanotubes Dispersed in Solvents and Glass

Hui-Yu Chen, Wei Lee

Department of Physics, Chung Yuan Christian University

Abstract

This paper summarizes our investigation of the absorption spectra of multiwall carbon nanotubes in the ultraviolet, visible and near-infrared regions. We took measurements of various carbon-nanotube suspensions and nanotube-doped glass in order to observe the absorptive characteristics of multiwall carbon nanotubes in distinct environments. Experimental results indicate that the near-infrared absorption features, due to the solvent effects, appear at different wavelengths to resemble those of semiconducting singlewall carbon nanotubes, and that the matrix-isolated sample displays a visible absorption band at a wavelength characterized by metallic singlewall carbon nanotubes.

Keywords: carbon nanotube, matrix isolation, absorption spectrum