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Abstract

Information causality has been proposed to constrain the maximal mutual information

shared between sender and receiver in a communication protocol based on physical theories

such as quantum mechanics.

We reformulate the information causality in a more general framework by adopting

the results of signal propagation and computation in a noisy circuit. In our framework,

the information causality leads to a broad class of Tsirelson inequalities for the two-

level quantum systems. This fact allows us to subject the information causality to the

experimental scrutiny. A no-go theorem for reliable nonlocal computation is also derived.

Information causality prevents any physical circuit from performing reliable computations.

Moreover, we test the information causality for the more general quantum commu-

nication protocols with multi-level and (non-)symmetric channels by directly evaluating

the mutual information. Our results support the information causality which is never vio-

lated for the more general settings discussed in this work. For the two-inputs/two-outputs

cases, we also find that the information causality is saturated not for the channels with

the maximal quantum non-locality associated with the Tsirelson inequality but for the

marginal cases saturating the Bell’s inequality. This indicates that the more quantum

non-locality may not always yield the more mutual information.

Keywords: Information causality, quantum communication, quantum computation,

quantum non-locality
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中文摘要 

    在基於物理理論的通訊協定中, 例如:量子力學, 訊息因果論限制傳送者與

接受者之間的最大共有訊息量. 

    我們通過更廣泛的框架, 即使用討論訊號傳送及錯誤計算的結果, 來重新

了解訊息因果論與量子力學的關係. 在我們的框架中, 訊息因果論將導致一組

在二態量子系統下的 Tsirelson 不等式 (量子系統的極限值). 基於這樣的結

果, 訊息因果論對使用物理系統的實驗產生限制. 此外, 在我們的框架中, 可

信賴的非定域性的計算是不可行的. 訊息因果論的限制將使得物理系統的計算

線路無法進行可信賴的計算. 

    另外, 我們直接計算共有訊息量, 藉以測試訊息因果論在更普遍的通訊協

定中的正確性, 這些普遍的通訊協定包含多態的系統及非對稱的通訊管道. 我

們的結果支持訊息因果論, 意思是在這些普遍的通訊協定中, 共有訊息量不會

超過訊息因果論給的限制. 此外, 如果通訊管道包含兩個輸出及兩個輸入, 我

們發現共有的量子系統擁有最大非定域性時 (滿足 Tsirelson 不等式的限制), 

共有訊息量的值不是最大的. 最大的共有訊息量出現在共有的系統恰好滿足定

域性理論給出的極大值時 (Bell 不等式給的限制), 且此時共有的訊息量和訊

息因果論給的限制相同. 這個結果指出共享一個量子非定域系統, 並不一定產

生較多的共有訊息量. 

關鍵字： 訊息因果論、量子通訊、量子計算、量子非定域性 
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Chapter 1

Introduction

1.1 No-signaling theory and quantum non-locality

Quantum information science has been developed for nearly a half century. The tasks in

the quantum information science such as commutation, computation and cryptography

are operated with quantum systems. Since the famous Shor’s factoring algorithm [1] was

proposed, people were aware that the quantum computation may be efficient. Therefore,

quantum information science became a very important topic in the 1980s. Of course,

we cannot ignore the beautiful idea of the BB84 key distribution protocol [2]. Using the

uncertainty principle of quantum mechanics, the BB84 protocol keeps the security of the

communication.

From the above examples, we could know the importance of quantum mechanics to

the information science. Nowadays, we know that the quantum mechanics is inherently

non-local and it cannot violate the no-signaling theory which states that superluminal

signaling is impossible. Due to these properties, here comes a problem: could the quantum

correlations be singled out by considering both the non-locality and the no-signaling

theory? In this section, we will review the theory of quantum non-locality and the no-

signaling theory, and then try to answer this question.

1.1.1 Quantum non-locality

In 1935, Albert Einstein and his collaborators Boris Podolsky and Nathan Rosen (known

collectively as EPR) proposed a thought experiment to show the conflict between locality

and physical reality in quantum mechanics. Their arguments were latter called the EPR

paradox. The paradox implies that quantum mechanics is an incomplete physicals theory

[3]. They also gave the definition for a complete physical theory. That is, if every element

of the physical reality have a counterpart in the physical theory, we then could judge this

physical theory is complete. Furthermore, what is the element of physical reality? The

authors said if one could predict the quantity of a measurement with certainly for an

1



undisturbed system, then there must exist an element of physical reality determining this

quantity. However, there are two ways to solve the EPR paradox, the first one is the local

hidden variable theory and the other one is the quantum non-locality.

Almost thirty years after the proposition of EPR paradox, in 1964, J. S. Bell proposed

the famous Bell inequality [5]. The construction of the Bell inequality is based on the

local hidden variable theory. Bell then asked, no matter how Alice and Bob measure their

particles, could the probability distribution of quantum measurement’s outcomes always

be reproduced by the local hidden variable theory? In the other words, could the Bell

inequality always be satisfied? The answer is no. Bell found an example to show this.

Due to the negative answer, one may think that the local hidden variable theory may be

wrong. Therefore, the failure of the local hidden variable theory will imply the validity

of the other solution for EPR paradox, quantum non-locality.

In this subsection, we will explain what is the EPR paradox and therefore how to use

the local hidden variable theory and quantum non-locality to solve the paradox. Moreover,

we will introduce the more general Bell inequalities and show the quantum violation, so

that we have more confidence to judge that quantum mechanics is a non-local theory.

1.1.1.1 The EPR paradox and the local hidden variable theory

Now, we will study the EPR paradox. We know quantum mechanics can describe physical

phenomena at microscopic scales very well, but it still has some limitations. According

to the uncertainty principle in quantum mechanics, we cannot precisely obtain two quan-

tities simultaneously if they correspond to non-commute operators such as spin angular

momentum operators for x- and z-axis. Therefore, by the definition of the element of

physical reality, the elements of physical reality related to the spin angular momentum

for x- and z-axis could not exist simultaneously.

Bohm’s thought experiment [4] may challenge the uncertainty principle. This exper-

iment is as follows. Suppose Alice and the distant party Bob hold an electron from the

emitted pair of electrons separately. The quantum state of the electrons is the singlet

state, i.e.,

|Ψ〉EPR =
1√
2

(|+ z,−z〉AB − | − z,+z〉AB), (1.1)

where |+ z〉 and | − z〉 are used to denote the eigenstates of spin operator along z-axis

2



(up or down). Note that, | + z〉 corresponds to the state with the z-component of spin

angular momentum being +~
2 , and similarly | − z〉 to −~

2 . If Alice measures the spin

angular momentum along z-axis, once she obtains | + z〉, the quantum state then will

collapse to |+ z,−z〉AB. Alice can predict that Bob will get | − z〉 with certainty if Bob

then makes a measurement along the z-axis. Similarly, if Alice obtains | − z〉, Bob then

gets | + z〉. Of course, they can choose x-axis to make the measurement. Since the total

spin angular momentum for the singlet state is conserved to be zero, Bob will get the

opposite result to Alice’s outcome. These cases show us that Alice can predict Bob’s

measurement results along z- and x-axis with certainty before Bob measure his electron.

Furthermore, the corresponding elements of physical reality to these quantities must exist

simultaneously. Recall the constraint of the uncertainty principle, we cannot predict the

spin angular momentum along x- and z-axis with certainty simultaneously. Obviously,

this implies that quantum mechanics is not a self-consistent theory. This dilemma is the

so-called the EPR paradox. Due to the EPR paradox, the authors of [3] gave a conclusion

that quantum mechanics is an incomplete physical theory while the wave function does

not provide the complete description to reveal the elements of physical reality.

There are two ways to resolve the EPR paradox. The first one is the local hidden

variable theory. The other one is the quantum non-locality. The first one was proposed

by EPR [3]. The local hidden variable theory satisfies the following conditions.

• In a complete physical theory, the measurement results are determined before mea-

surements.

• Bob’s measurement will not be disturbed by Alice’s measurement if Alice is far from

Bob, i.e., the action in a distance is impossible. Therefore, the non-locality between

distant partite is impossible.

In the local hidden variable theory, the hidden variable is like a secret code, it can

determine the result of measurement. Therefore, if one can know the hidden variable and

the wave function of a system, one then can predict the measurement result.

Now, we can discuss how to use the local hidden variable to resolve the EPR paradox.

Since the hidden variable theory is a local theory, the hidden variable for Bob’s particle

will not be modified while Alice measures her own particle. Thus, Alice can obtain the

information about the value of the hidden variable when she measures her own particle.

3



She can then predict the outcome of Bob’s measurement. Let’s take Bohm’s thought

experiment for example. Before measuring the spin angular momentum along x- and

z-axis, the outcomes of Alice’s and Bob’s measurements are already determined by the

hidden variables. Due to the hidden variables, Bob always gets the opposite to Alice’s

outcome while Alice and Bob choose the same axes. Thus, before the measurements, the

two emitted electrons may be one of the following four types:

Alice’s particle Bob’s particle

(|+ z〉, |+ x〉, λ1) (| − z〉, | − x〉, λ1)

(|+ z〉, | − x〉, λ2) (| − z〉, |+ x〉, λ2)

(| − z〉, |+ x〉, λ3) (|+ z〉, | − x〉, λ3)

(| − z〉, | − x〉, λ4) (|+ z〉, |+ x〉, λ4)

Here λi are used to denote the hidden variable with different values. If Alice and Bob

measure their own electron along the different axes, Bob will obtain +~
2 or −~

2 with

equal probability no matter what outcome Alice obtains. However, one can find Bob’s

measurement result is determined no matter what axis Alice chooses to measure. It

is consistent with the property of the locality, i.e., the impossibility of the action at

a distance. Thus, the local hidden variable theory not only satisfies the locality but

also obtains the same prediction of measurement outcomes as predicted by quantum

mechanics. It seems that we have already obtained a complete physical theory.

1.1.1.2 The Bell’s inequality and the CHSH inequality

Bell’s experiment is similar as Bohm’s thought experiment, but Alice and Bob have three

choices (axes a, b and c) to measure the spin angular momentum. According to the

local hidden variable theory, the determined measurement results for a singlet state (1.1)

can be divided into eight types as Tab.1.1. Alice’s and Bob’s measurement results are

opposite to each other for each types in order to preserve the angular momentum. We

use Ni to denote the number of times for type i while we repeat the same experiment for

N =
∑8

i=1Ni times. Suppose Alice obtains +~
2 for the measurement along a-axis and

Bob also obtains +~
2 when measuring the spin along b-axis. Let Pr(+,+|a, b) be the joint

probability of this situation. Obviously, the determined result of particles could be type

3 or 4. Therefore,

Pr(+,+|a, b) =
N3 +N4

N
. (1.2)

4



Table 1.1: The determined measurement results in the local hidden variable theory
Number Alice’s particle Bob’s particle

N1 (|+ a〉, |+ b〉, |+ c〉) (| − a〉, | − b〉, | − c〉)
N2 (|+ a〉, |+ b〉, | − c〉) (| − a〉, | − b〉, |+ c〉)
N3 (|+ a〉, | − b〉, |+ c〉) (| − a〉, |+ b〉, | − c〉)
N4 (|+ a〉, | − b〉, | − c〉) (| − a〉, |+ b〉, |+ c〉)
N5 (| − a〉, |+ b〉, |+ c〉) (|+ a〉, | − b〉, | − c〉)
N6 (| − a〉, |+ b〉, | − c〉) (|+ a〉, | − b〉, |+ c〉)
N7 (| − a〉, | − b〉, |+ c〉) (|+ a〉, |+ b〉, | − c〉)
N8 (| − a〉, | − b〉, | − c〉) (|+ a〉, |+ b〉, |+ c〉)

Similarly,

Pr(+,+|a, c) =
N2 +N4

N

Pr(+,+|c, b) =
N3 +N7

N
. (1.3)

Since we know each number Ni should be non-negative, the following inequality will hold,

i.e.,

N3 +N4 ≤ N2 +N4 +N3 +N7. (1.4)

Therefore, when both sides of the above inequality are divided by N , we can obtain

Pr(+,+|a, b) ≤ Pr(+,+|a, c) + Pr(+,+|c, b). (1.5)

This is the so-called Bell inequality.

Now, by checking the Bell inequality (1.5), we can check if the prediction of quantum

mechanics is always consistent with the local hidden variable theory. Suppose Alice and

Bob share a singlet state (1.1) and Alice measures the spin angular momentum along

a-axis. In quantum mechanics, Alice has half a chance to obtain +~
2 along a-axis and

therefore the singlet state will then collapse to |+a,−a〉. Suppose Bob then measures his

particle along b-axis, Bob will obtain +~
2 with probability |〈+b| − a〉|2 = sin2(θab2 ). Here

θab is the angle between a- and b-axis. Put this value and the other similar twos into the

Bell inequality (1.5), one can rewrite the (1.5) as

sin2(
θab
2

) ≤ sin2(
θac
2

) + sin2(
θbc
2

). (1.6)

Assume these three axes (a, b and c) are in the x-z plane, i.e., θab = π
2 and θac = θbc = π

4 .

One can find the left hand side of (1.6) is 0.5 and the right hand side is 0.2929. Obviously,

5



the Bell inequality is violated. Thus, the local hidden variable theory and quantum

mechanics are not always consistent with each other. Moreover, the non-locality property

is revealed by quantum mechanics.

In 1969, another form of the Bell inequality named the CHSH inequality was proposed

[6]. The CHSH inequality is more convenient for experiments to test the non-locality. As

the Bell inequality, the construction of the CHSH inequality is based on the local hidden

variable theory, and therefore one could find the quantum violation.

Suppose both Alice and Bob has two observables and each observable has two outcomes

+1 or −1. We denote Alice’s outcomes for her two observables as A0 and A1, respectively.

Similarly, B0 and B1 are Bob’s outcomes for his observables, respectively. These outcomes

would satisfy one of the following conditions.

1. If A0 + A1 = 0, then A0 − A1 = ±2.

2. If A0 + A1 = ±2, then A0 − A1 = 0.

One could then find the equality

C = (A0 + A1)B0 + (A0 − A1)B1 = ±2. (1.7)

Since we know

|〈C〉| ≤ 〈|C|〉 = 2, (1.8)

where 〈.〉 is used to denote the expectation value, so that

−2 ≤ 〈A0B0〉+ 〈A0B1〉+ 〈A1B0〉 − 〈A1B1〉 = C0,0 + C0,1 + C1,0 − C1,1 ≤ 2. (1.9)

Note that Ci,j is the expectation value for outcomes AiBj . This inequality (1.9) is the

well-known CHSH inequality.

Now, we want to translate the above into the language to quantum mechanics. In quan-

tum mechanics, the observable is a measurement operator with ±1 eigenvalues. Therefore,

the expected value of the outcomes is relied on the type of the measurement operators and

the quantum state. Suppose Alice and Bob share a singlet state and Alice’s observables

are x and x′ with the outcomes A0 and A1 respectively. Similarly, Bob’s observables are

y and y′ with the outcomes B0 and B1 respectively. Here, the observables r could be

expressed as ~r · ~σ, where ~r is a real three-dimensional unit vector and each element of
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vector ~σ corresponds to different Pauli matrices, i.e., ~σ = (σx, σy, σz). Therefore, the

expectation value for outcomes A0 and B0 is

〈A0B0〉 =EPR 〈Ψ|(~x · ~σ)(~y · ~σ)|Ψ〉EPR = −~x · ~y = − cos θ, (1.10)

where θ is the angle between ~x and ~y. We know that the expectation value is related

to the direction of the measurements. Consider the case where Alice and Bob perform

measurements with the following obserables:

x = σz, x
′ = σx;

y = −σz + σx√
2

, y′ =
σz − σx√

2
. (1.11)

Thus,

|C0,0 + C0,1 + C1,0 − C1,1| = 2
√

2. (1.12)

Obviously, the prediction of quantum mechanics exceeds 2, i.e., the bound from the local

hidden variable theory. Therefore, the CHSH inequality is violated by quantum mechan-

ics.

Although we have known that the quantum mechanics violates the CHSH inequality,

what is the maximal violation? B. S. Cirel’son used the quantum properties of the ob-

servables to obtain the answer, 2
√

2 [7]. Thus, the maximally quantum violation of the

CHSH inequality is called the Tsirelson bound.

One can obtain the Tsirelson bound with the following properties [59]:

• Since these observables for quantum measurements should be the hermitian opera-

tors with eigenvalue ±1, thus the square of each observable is equal to the identity

operator, i.e.,

x2 = x′2 = y2 = y′2 = I. (1.13)

• Alice’s observables commute with Bob’s since they only measure their own particles.

Thus,

[x, y] = [x, y′] = [x′, y] = [x′, y′] = 0. (1.14)

Using the above conditions (1.13) and (1.14), one can obtain

(xy + x′y + xy′ − x′y′)2 = 4I + [x, x′][y, y′]. (1.15)
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Using the property of sup norm of a matrix M , i.e., sup|ψ〉(
‖M |ψ〉‖
‖|ψ〉‖ ), we can obtain

‖ [x, x′] ‖≤ 2 ‖ x ‖‖ x′ ‖= 2. (1.16)

Therefore,

‖ xy + x′y + xy′ − x′y′ ‖≤ 2
√

2. (1.17)

This means that the maximal expectation value of the operator xy + x′y + xy′ − x′y′

cannot exceed 2
√

2.

1.1.1.3 More general Bell-type inequalities

After the publication of the CHSH inequality, more general Bell-type inequalities was

proposed such as the Bell-type inequality for higher dimensional system [8] and the case

of multi-setting per site [9]. We can have more understanding about quantum non-locality

through these more general Bell-type inequalities. As the construction of the Bell inequal-

ity, the constructions of these Bell-type inequalities are based on the local hidden variable

theory. Therefore, one may find the quantum violation of these Bell-type inequalities

since the quantum correlation is non-local and cannot be described by the local hidden

variable theory.

Here, we would like to review the multi-level Bell-type inequality which is called the

CGLMP inequality [8]. In this case, both Alice and Bob have two observables. Alice’s

outcomes are Ax, and similarly Bob’s outcomes are By (x, y ∈ {0, 1}). Therefore, in the

multi-level system Ax and By ∈ {0, 1, ..., d− 1}.

Recall the local hidden variable theory, assuming Alice and Bob’s measurement out-

comes are determined by the local hidden variables j, k, l and m, so that the value of

observable A0 is j and the one of A1 is k. Similarly, B0 gives l and B1 gives m. The

probability for the local hidden variables j, k, l,m is denoted by cjklm, and therefore the

summation of the probabilities should be one, i.e.,
∑

jklm cjklm = 1. Consider the special

case

r′ = B0 − A0 = l − j

s′ = A1 −B0 = k − l

t′ = B1 − A1 = m− k

u′ = A0 −B1 = j −m, (1.18)
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which automatically yield

r′ + s′ + t′ + u′ = 0. (1.19)

This means the relations among the local hidden variables cannot be arbitrary. Although

we could determine the relations r′, s′ and t′ by choosing variables j, k, l and m, but the

last term u′ should be constrained by (1.19). This plays the central role in deriving the

CGLMP inequality.

Consider a function for a d = 3 system as follows.

I3 = [Pr(A0 = B0) + Pr(B0 = A1 + 1) + Pr(A1 = B1) + Pr(B1 = A0)]

−[Pr(A0 = B0 − 1) + Pr(B0 = A1) + Pr(A1 = B1 − 1) + Pr(B1 = A0 − 1)].

(1.20)

According to the local hidden variable theory, the maximal value of (1.20) is 2, i.e.,

I3(local) ≤ 2. This is because when the three probabilities with the “ + ”-sign are

satisfied, the term with the “− ”-sign will also be satisfied. On the other hand, once all

the four terms with “ + ”-sign could be satisfied by non-local correlations, the maximal

value of the function (1.20) would be 4.

One can then generalize the function from d = 3 to arbitrary d. The generalized

function for the multi-level Bell-type inequality is

Id =

[ d
2
]−1∑
k=0

(1− 2k
d−1

)[Pr(A0=B0+k)+Pr(B0=A1+k+1)+Pr(A1=B1+k)+Pr(B1=A0+k)]

−[Pr(A0=B0−k−1)+Pr(B0=A1−k)+Pr(A1=B1−k−1)+Pr(B1=A0−k−1)]. (1.21)

As for the d = 3 case, the maximal value of Id from the local hidden variable theory is 2,

i.e., Id(local) ≤ 2. Therefore, the maximal value achieved by the non-local correlations is

still 4. For more detailed proof, please see [8].

Now, we can study the quantum violations respected to the maximum of Id(local).

Assuming Alice and Bob share a maximally entangled state

|ψ〉 =
1√
d

d−1∑
j=0

|j〉A ⊗ |j〉B, (1.22)

and Alice’s observables are x and y′, similarly y and y′ for Bob. One can obtain optimal
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value of (1.21) when these observables correspond to the following eigenvectors [8]:

|k〉A,x =
1√
d

d−1∑
j=0

exp(i
2π

d
j(k + αx))|j〉A

|l〉B,y =
1√
d

d−1∑
j=0

exp(i
2π

d
j(l − βy))|j〉B, (1.23)

where α0 = 0, α1 = 1/2, β0 = 1/4 and β0 = −1/4. Thus, one can obtain the joint

probability for the outcomes

Pr(Ax = k,By = l) = |〈ψ|(|k〉A,xA,x〈k| ⊗ |l〉B,yB,y〈l|)|ψ〉|

=
1

2d3 sin2[π(k − l + αx + βy)/d]
. (1.24)

With this joint probability, one can obtain the bound achieved by the maximally entangled

state

Id(QM) = 4d

[ d
2
]−1∑
k=0

(1− 2k

d− 1
)(Pr(A1 = B1 + k)− Pr(A1 = B1 − k − 1)) > 2 ≥ Id(local).

(1.25)

According to this quantum violation, we have another example such that the local hidden

variable theory is not consistent with quantum mechanics. Thus, quantum mechanics is

intrinsically non-local.

1.1.2 No-signaling theory

The quantum mechanics is constrained by some natural principle such as the relativis-

tic causality. The relativistic causality gives many important results, one of them is the

speed of propagation cannot be faster than the light speed in any reference frame. Due

to the fact, here comes the no-signaling theory which states that the speed of the propa-

gating information cannot be faster than the light speed, i.e., the superluminal signaling

is impossible.

Consider the constraint of no-signaing theory, many related works have been studied.

It is interesting that the constraints from the no-signaling theory and quantum mechanics

lead to the same behaviors of the correlations such as no-cloning [11, 12], no-broadcasting

[13] and monogamy of entanglement [11]. As shown [14, 15], both the no-signaling theory

and quantum mechanics preserve the security of the key distribution.
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We will study the specific constraint of the no-signaling theory in this subsection. First,

we define the measurement scenario for producing the bi-partite correlations. Second,

we introduce the correlations satisfying the no-signaling theory. Furthermore, these no-

signaling correlation could be divided into two subsets: the local correlations and the

non-local ones. We will also discuss the properties of these correlations.

1.1.2.1 The measurement scenario and the box version

First, let us define the measurement scenario for the bi-partite correlations. Both Alice

and Bob hold a physical system. They can choose to measure arbitrary observables to

probe their systems. We denote the observable for Alice as x and denote the outcome of

the observable x as Ax. Similarly, Bob’s observable is denoted as y and the corresponding

outcome is By. Therefore, the bi-partie correlation is defined by the conditional joint

probability, i.e.,

Pr(Ax, By|x, y). (1.26)

Note that, the conditional joint probability should be nonnegative and satisfy the normal-

ization conditions, thus the summation of the conditional joint probabilities with fixed

observables should be one, i.e.,∑
Ax,By

Pr(Ax, By|x, y) = 1. (1.27)

One can reformulate the scenario in a more abstract way. Instead of giving a specific

physical system, one assumes a bi-partite box shared by Alice and Bob. Both of them put

the inputs into the box, he (she) then will obtain the corresponding outputs. The shared

box is characterized by the joint probability (1.26). Note that, the number of Alice and

Bob’s inputs may not be the same, similarly for the number of their outputs. According

to the property of the bi-partite box, one can divide them into many types such as the

no-signaling box and the signaling one. We will discuss the property of the bi-partite box

later. Hereafter, we will use the terms ”box” and ”correlation” interchangeably when we

discuss the property of the joint probability (1.26).

For the necessary, one can generalize the above bi-partite box to the multi-partite case.
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1.1.2.2 No-signaling correlations

Now, we can discuss the no-signaling condition for the bi-partie correlations. Note that,

If the shared box can simulate no-signaling correlations, we call the box as a no-signaling

box [20]. Otherwise, the shared box is a signaling one.

Despite of any non-local correlations previously shared between them, Alice cannot

signal to the distant Bob by her choice of inputs due to the no-signaling theory. This

indicates that Bob’s marginal probability Pr(By|y) is independent with Alice’s input x.

Similarly, Alice’s marginal probability is independent with Bob’s input y. Therefore, the

condition for the correlations (box) to be no-signaling is

Pr(By|y) =
∑
Ax

Pr(Ax, By|x, y) =
∑
Ax′

Pr(Ax′ , By|x′, y), ∀By, y, x, x′,

Pr(Ax|x) =
∑
By

Pr(Ax, By|x, y) =
∑
By′

Pr(Ax, By′ |x, y′), ∀Ax, x, y, y′. (1.28)

The no-signaling box can be divided into two types, the local and non-local ones. The

local box can simulate the local correlations which can be described by the local hidden

variable theory. From the information theoretic point of view, the local correlations can

be simulated by the non-communicating observers with the pre-shared classical random

data. Therefore, the local correlations should satisfy

Pr(Ax, By|x, y) =
∑
λ

Pr(λ) Pr(Ax|x, λ) Pr(By|y, λ), (1.29)

where λ is the pre-shared classical random data and the probability for its occurrence is

Pr(λ). The probability of occurrence for Alice’s output Ax with the given random data

λ and the input x is denoted as Pr(Ax|x, λ). The marginal probability Pr(By|y, λ) has

the similar definition. If the box cannot simulate the local correlation, we will call it the

non-local box.

Besides using the the local and the non-local as the categories for the correlations,

we want to discuss a another way of categorizing, the quantum correlartions. Quantum

correlations can be obtained by sharing the quantum resource such as the quantum state.

These correlations can be written as

Pr(Ax, By|x, y) = Tr(EAx
⊗ EBy

ρ), (1.30)

where ρ is the density matrix of the shared quantum state, and EAx
and EBy

are the

projection operators corresponding to Alice and Bob’s measurements, respectively. Note
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that, these operators are the elements of a positive-operator valued measure (POVM) [60]

and therefore the operators should satisfy

ΣAx
EAx

= ΣBy
EBy

= I, ∀x, y. (1.31)

1.1.3 Could the no-signaling theory single out quantum correlations?

Let us recall how to obtain the bound of quantum non-locality. It comes from the math-

ematic constraint. Therefore, we are curious if there is a natural principle which could

imply quantum mechanics. After reviewing the constraint of the no-signaling theory, we

may ask a question: could the no-signaling theory be the physical principle which we

are looking forward to? More precisely, does the non-locality and the no-signaling the-

ory together imply quantum theory? This question was firstly asked and answered by S.

Popescu and D. Rohrlich [21]. Their answer is negative, since quantum mechanics is not

the only theory which satisfies the no-signaling constraints and also violates the CHSH

inequality. Furthermore, under the constraints of the no-signaling theory, the maximal

violation of the CHSH inequality is bigger than the maximally quantum violation. These

extremal non-local correlations are called super-quantum correlations in [21].

We will discuss the properties of the super-quantum correlations. We then review the

geometric picture of all the no-signaling correlations in [20]. It is interesting that the

Bell-type inequality and the facet of the local polytope are related. Finally, under the

constraints of the no-signaling theory, one can demonstrate that the extremal non-local

correlations lead to the trivial communication complexity from information theoretic point

of view.

1.1.3.1 Beyond the quantum correlations

Does the non-locality and the no-signaling theory together imply quantum mechanics? In

[21], the authors used the following process to show the negative answer. First, one could

take the non-locality and the no-signaling theory as two axioms. Second, one could try to

find the maximal violation of the CHSH inequality and notice that the maximal violation

cannot be achieved by quantum mechanics. Therefore, the axiom of non-locality implies

the quantum correlation is not the most non-local one. One may then guess that the

other axiom, the no-signaling theory, might give the constraint of quantum non-locality.

However, there is a set of joint probabilities achieves the maximal violation of the CHSH
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inequality and satisfies the no-signaling theory (1.28). This means, the non-signaling

constraints cannot single out quantum correlations.

To be specific, we want to find the maximal non-locality. In [21], they used the CHSH

function to characterize the non-locality, where the CHSH function is

|C0,0 + C0,1 + C1,0 − C1,1|. (1.32)

Note that, each term Cx,y in (1.32) is the correlation function for the specific inputs x

and y. The definition of Cx,y is

Cx,y =
∑
Ax,By

(−1)Ax+By Pr(Ax, By|x, y). (1.33)

Here x, y, Ax and By ∈ {0, 1}. With the definition of Cx,y, we know that each Cx,y lies

in [−1, 1]. Therefore, the maximal value of the CHSH function (1.32) should be 4. Since

we have known that the local bound and the quantum bound (Tsirelson bound) of CHSH

function are 2 and 2
√

2, respectively. Obviously, the maximal value of CHSH function is

bigger than the Tsirelson bound and cannot be achieved by the quantum correlations.

A question then arises: why quantum mechanics could not be more non-local? Is this

because of the constraint from the no-signaling theory? Therefore, one could consider

the no-signaling correlations (1.28) and then calculate the corresponding value of CHSH

function (1.32). With the no-signaling theory, Alice cannot signal to Bob her choice of

inputs, and vise versa. In [21], they found the following joint probabilities such that the

no-signaling theory is satisfied and the maximum of the CHSH function (4) is achieved:

Pr(Ax, By|x, y) =

 1
2 :Ax +By (mod 2)=xy;

0 : otherwise.
(1.34)

The no-signaling theory is satisfied, this is because Pr(Ax|x) and Pr(By|y) are equal to

1
2 . Obviously, this set of joint probabilities is not consistent with quantum correlations.

Therefore, the no-signaling theory and the non-locality together cannot imply quantum

mechanics.

Besides finding the above fact, one could also find the extremal non-local correlations

over the non-signaling correlations (1.34). It is called super-quantum correlations in [21].

Once the shared box can simulate the super-quantum correlations, we would say Alice

and Bob share a PR-box.
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1.1.3.2 The no-signaling polytope

In [20], the authors gave a geometric picture of the bi-partie no-signaling correlations. The

dimensions of the no-signaling polytope could be obtained by the following calculation.

Suppose Alice and Bob have kx and ky kinds of inputs, respectively. Each input

could have d kinds of outputs. Therefore, we could have kxkyd
2 kinds of joint proba-

bilities Pr(Ax, By|x, y)’s. Since we consider the no-signaling box, the constraints of the

no-signaling theory (1.28) and the normalization conditions should be imposed on these

joint probabilities. This leads to

1. The normalization conditions give kxky equalities.

2. The no-signaling constraints give
∑

x d+
∑

y d = (kx + ky)d equalities.

However, these two types of conditions are not independent. For a fixed x, consider the

normalization condition, one of the marginal probabilities Pr(Ax|x)’s could be expressed

by the others. Therefore, for a fixed x, one no-signaling condition can be deduced by the

normalization condition and the other (d− 1) no-signaling conditions. So that, there are

kxky +
∑

x(d− 1) +
∑

y(d− 1) linear independent equalities. Thus, the number of joint

probabilities will be reduced to

dim = kxkyd
2 − (kxky +

∑
x

(d− 1) +
∑
y

(d− 1)). (1.35)

This means that the no-signaling boxes form a dim-dimensional polytope [20].

For the two-inputs/two-outputs case, both Alice and Bob have two kinds of inputs,

and each input could have two outputs. Therefore, the bi-partite no-signaling boxes yield

a 8-dimensional polytope.

The no-signaling polytope has 24 vertices, 16 of them correspond to local deterministic

boxes and other 8 vertices correspond to the extremal non-local boxes.

The local deterministic box implies that the value of the marginal probabilities Pr(Ax|x)

and Pr(By|y) is either 0 or 1. The joint probabilities of the local deterministic box should

satisfy

Pr(Ax, By|x, y) =

 1 :Ax = αx+ β (mod 2) and By = γy + δ (mod 2);

0 : otherwise.
, (1.36)

where α, β, γ and δ ∈ {0, 1}. Actually, these local deterministic boxes can yield another

convex polytope of locality by themselves. The facets of this polytope can be divided
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into two types. The first type of facets restricting the joint probabilities in the polytope

should be non-negative. The second type of facets correspond to the Bell-type inequality.

Therefore, whenever the Bell-type inequality is violated by a set of joint probabilities,

these joint probabilities will lie outside this polytope of locality. In the two-inputs/two-

outputs case, the Bell-type inequalities correspond to the CHSH inequalities [22], i.e.,

(1.9) and its three symmetric partners by shifting the minus sign. There are 8 kinds of

the CHSH inequalities.

The remainder vertices of the no-signaling polytope correspond to the extremal non-

local boxes. The joint probabilities should satisfy

Pr(Ax, By|x, y) =

 1
2 :Ax +By = xy + αx+ βy + γ (mod 2);

0 : otherwise.
, (1.37)

where α, β and γ ∈ {0, 1}. When α = β = γ = 0, the extremal non-local box is the

PR-box (1.34). Note that, each extremal non-local box will violate one of the CHSH

inequalities. Furthermore, they can achieve the maximal violation, i.e., 4 or −4. It

is interesting that one non-local vertex of the no-signaling polytope corresponds to one

facet of polytope of locality.

There is another example for this connection. Suppose Alice and Bob have two inputs

and each input has d outputs, one of the non-local vertex of the no-signaling polytope

can achieve the maximal violation of the CGLMP inequality [8], i.e., the value of (1.21)

is 4. The corresponding joint probabilities are as follows.

Pr(Ax, By|x, y) =

 1
d :By − Ax(mod 2)=xy ;

0 : otherwise.
, (1.38)

Moreover, one could use this relations to find the complete set of the Bell-type inequalities

by other extremal non-local boxes.

1.1.3.3 The communication complexity and the extremal non-local correlations

The communication complexity [23] is used to discuss how much of the communication

is needed to solve a distributed decision problem. More specifically, if Alice has a n-bit

string ~x = (x1, x2, ..., xn) and Bob also has a n-bit string ~y = (y1, y2, ..., yn). Their goal is

to obtain the value of the function f(~x, ~y). Note that the function f is a Boolean function:

f : {0, 1}n × {0, 1}n → {0, 1}. The definition of the communication complexity is the
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minimum number of bits exchanged between Alice and Bob in the worst case in order

to achieve such a task. If the value of the function f(~x, ~y) can be obtained with only

one bit of communication, one could say that the distributed decision problem has the

trivial communication complexity. In practical, Alice and Bob could share some non-local

resources to reduce the communication complexity such as an entangle state [26].

One show the power of the extremal non-local correlations in terms of communication

complexity. When Alice and Bob share PR-boxes, for any distributed decision problem,

the communication complexity is trivial [24]. Let us take an example to show the fact. If

Alice and Bob want to determine the inner-product function (IPn : {0, 1}n × {0, 1}n →

{0, 1}), where

IPn(~x, ~y) =

n∑
i=1

xiyi. (1.39)

Recall the PR-box (1.34), it keeps the inputs and the outputs perfectly correlated, i.e.,

Pr(Ax + By = xy|x, y) = 1, ∀x, y. If Alice and Bob share n PR-boxes, they could take

the i-th bit of the string xi and yi as the input of the i-th PR-box, and obtain the

corresponding outputs Axi and Byi , respectively. Thus,

n∑
i=1

xiyi =

n∑
i=1

Axi +Byi =

n∑
i=1

Axi +

n∑
i=1

Byi . (1.40)

This means that, Bob only needs to send the bit b =
∑n

i=1Byi to Alice, Alice can then

determine the value of the Inner Product function IPn(~x, ~y) by her outputs and the bit b.

Thus, the communication complexity is trivial in determining the inner-product function.

In [24], van Dam showed if one can determine the inner-product function f(~x, ~y) = ~x ·~y

of 2n inputs by one bit communication, then one can also determine any Boolean func-

tion f(~x, ~y) of n inputs with trivial communication complexity. According to the previous

example, the inner-product function could have the trivial communication complexity for

any number of inputs, we then know that for any distributed decision problem the com-

munication complexity is trivial by sharing the PR-boxes. Moreover, some works [27, 28]

show that the trivial communication complexity can indeed be achieved by sharing other

non-local boxes. These non-local boxes are not the extremal non-local ones. However,

the correlations of these boxes are still more no-local than the quantum correlations, i.e.,

|C0,0 +C0,1 +C1,0−C1,1| ≥ 2
√

2. Therefore, we could not use the trivial communication

complexity to single out the quantum correlations.
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1.2 Information Causality

1.2.1 Information Causality single out quantum correlation?

In the previous section, we have shown that the no-signaling criterion can not be used to

single out the quantum correlations. What principle could be our next candidate? The

answer is Information Causality (IC) [29]. IC is presented through the following task

which is equivalent to the random access code (RAC) [30]. Alice has a database with

k elements, denoted by the vector ~a = (a0, a1, ..., k − 1). Each element ai is a binary

random variable and is only known to Alice. A second distant party, Bob is given a

random variable b ∈ {0, 1, 2, ..., k − 1}. The task of Bob is to optimally guess Alice’s

database ab after receiving m-bit string ~α sent from Alice via the pre-shared correlation

between Alice and Bob.

Before Alice sends the ~α, Bob cannot obtain the information about Alice’s database,

this is the no-signaling constraint. However, we are concerned about the information gain

after Bob receives Alice’s m-bit string ~α. IC states that the maximal mutual information

shared between Alice and Bob cannot exceed the amount of classical communication, even

they have pre-shared physical correlations, this condition can be expressed as follows:

I =

k−1∑
i=0

I(ai; β|b = i) ≤ m , (1.41)

where I(ai; β|b = i) is Shannon’s mutual information between ai and Bob’s guess d-bit β

under the condition b = i.

The condition of IC (1.41) is not theory-independent [29]. It holds for quantum infor-

mation theory. Let us define the pre-shared quantum state for Bob’s part as ρB. In the

task, after Alice sends the m-bit string ~α to Bob, the information possessed by Bob about

Alice’s database includes ~α and ρB. Note that, the mutual information between Alice’s

database and Bob’s own information can not be more than m bit, i.e.,

I(~a; ~α, ρB) ≤ m . (1.42)

(1.42) can be proved by some elementary properties and the no-signaling condition, i.e.,

I(~a; ρB) = 0. On the other hand, one can prove I ≤ I(~a; ~α, ρB) by the elementary

properties. Therefore, one can obtain that I ≤ I(~a; ~α, ρB) ≤ m. Thus, (1.41) holds for

the pre-shared quantum correlations.
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IC is not only satisfied by the pre-shared quantum correlations, but also violated

by the pre-shared PR-box which can simulate the extremal non-local correlations under

the no-signaling constraint [29]. This shows IC is more suitable to single out quantum

correlations. Moreover, the Tsirelson bound could be derived from IC. For the multi-

setting case, we show that more general Tsirelson-type inequalities can be derived by

the signal decay theory [50, 51] and IC. One can see Chapter 2 for more detailed proof.

According to these results, IC may be the natural principle which we are looking for.

Actually, one should prove that IC can exclude all non-quantum correlations so that

IC could be used to single out quantum correlations. Therefore, we still need more checks.

Since there are some non-quantum correlations below the Tsirelson bound, and therefore

we cannot express the entire boundary of quantum correlations by the no-signaling boxes

which achieving the Tsirelson bound. Thus, we have to check if the entire quantum bound-

ary can be recovered by IC. In [35], the relation between IC and the quantum boundary

for two-inputs/two-outputs case has been studied. In this case, IC is not violated by the

quantum correlations, therefore IC is supported. Besides, the relation between bi-partite

IC and the more general no-signaling boxes was studied. In the multi-level no-signaling

box [36], the relation between bi-partite IC and quantum correlations is unclear. In the

multi-partite no-signaling box [37, 38], bi-partite IC is violated by the most non-quantum

correlations, but not all the non-quantum correlations violate bi-partite IC. The reason

may be, the set of quantum correlations for an arbitrary number of parties can not be

singled out by using the principle with bi-partite information concepts [39]. Therefore,

although bi-partite IC is satisfied by some non-quantum correlations, it does not mean

IC cannot single out the quantum correlations. It just means that we need to generalize

the bi-partite IC to the multi-partite one.

However, even in this simplest case (the two-inputs/two-outputs no-signaling box) [35],

it is still unclear that if IC could exclude all the non-quantum correlations or not. Why it

is so difficult to prove the criterion? The reason is that there are too many strategies for

using the no-signaling boxs. Even sharing the same no-signaling box, different strategies

for using the box will yield different probabilities to win the task. Therefor, the mutual

information between Alice’s database ab and Bob’s guessing bit β will be different. So, it

is hard to ascertain if the non-quantum correlations violate IC or not.

However, we can have more understanding about the relation between IC and quantum
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correlations by testing IC for different quantum communication protocols or more general

settings. We will study these more general cases in chapter 3.

In the following subsections, we will review some important relations between IC and

quantum correlations which we mentioned in this subsection. They include how to derive

the Tsirelson bound from IC and how to compare quantum boundary and IC for the

two-inputs/two-outputs case.

1.2.2 Information Causality and the Tsirelson bound

1.2.2.1 The extremal non-locality violates Information Causality

As shown in [29], IC will be violated by the PR-box which is the extremal non-local box

under the constraint of no-signaling theory. One can use the specific RAC protocol to

show the fact.

 

Figure 1.1: The communication protocol for k = 2 task

Let us consider the simplest case, it is described in Fig1.1. The protocol is used to

solve k = 2 task. To be specific, first, Alice encodes her database as the input x of the

no-signaling box, where x = a0 + a1. On the other hand, the distant Bob takes his given

bit b as the input y of the no-signaling box. They then obtain the outputs Ax and By,

respectively. Note that, in this case x, y, Ax and By ∈ {0, 1}. Second, after obtaining

their outputs, Alice then sends a bit α = Ax+a0 to Bob. Finally, Bob can decode Alice’s

database ab by calculating the bit β = α + By. Since β = α + By = Ax + By + a0, if
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Alice’s and Bob’s inputs and outputs are perfectly correlated, i.e., Ax + By = xy, ∀x, y,

Bob can then obtain β = xy+ a0 = (a0 + a1)y+ a0 (mod 2). Obviously, either if y = 0,

β = a0 or if y = 1, β = a1. Thus, Bob can guess Alice’s database perfectly. If not

the PR-box, Bob’s successful probability depends on the value of the joint probability

Pr(Ax +By = xy|x, y).

In this case, the successful probability for the task is related to the CHSH function

(1.32). The successful probability to guess a0 right under the condition b = 0 is denoted

as P0, similarly P1 for a1. If Alice’s input is unbiased, i.e., the marginal probabilities

Pr(x = i) = 1
2 i ∈ {0, 1}, the successful probabilities can be rewritten as

P0 =
1

2
(Pr(Ax +By = 0|x = 0, y = 0) + Pr(Ax +By = 0|x = 1, y = 0))

P1 =
1

2
(Pr(Ax +By = 0|x = 0, y = 1) + Pr(Ax +By = 1|x = 1, y = 1)). (1.43)

Note that, one can obtain Pr(Ax +By = 0|x = 0, y = 0) = 1+C0,0

2 by the definition (1.33)

of the correlation function C0,0 and the normalization condition of the joint probability.

Similarly, Pr(Ax +By = 0|x = 1, y = 0) = 1+C1,0

2 , Pr(Ax +By = 0|x = 0, y = 1) = 1+C0,1

2

and Pr(Ax + By = 1|x = 1, y = 1) = 1−C1,1

2 . Consider these relations, if the marginal

probability Pr(b) is uniform, one can then find that the successful probability is equivalent

to the CHSH function, i.e.,

P =
1

2
(P0 + P1) =

1

8
(4 + C0,0 + C0,1 + C1,0 − C1,1). (1.44)

Since we have already know the locality bound and the Tsirelson bound for the CHSH

function, we can estimate the local bound and the quantum bound for the function P . The

local bound for P is 3
4 and the quantum one is 2+

√
2

4 . Under the no-signaling condition,

we can also know that the bound for the PR-box is 1. In this case, Bob can always

guess Alice’s database with certainty. Therefore, the mutual information between ai and

β under the condition b = i is 1, i.e., I(a0; β|b = 0) = I(a1; β|b = 1) = 1. That is, the

mutual information I is 2. Thus, IC is violated by sharing a PR-box.

1.2.2.2 Information Causality derives the Tsirelson bound

The Tsirelson bound emerges from IC, it is one of the important results in [29]. In order

to show the fact, one has to connect the mutual information I and the CHSH function.

Recall the CHSH function is equivalent to the successful probability of the task. Therefore,
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one should rewrite the mutual information I in terms of the successful probability of the

task. First, one can rewrite the mutual information I as
∑

iH(ai|b = i)−H(ai|β, b = i),

where H is the binary entropy function. Assuming that the marginal probability Pr(ai)

is uniform, thus the entropy function H(ai|b = i) = 1 for each ai. On the other hand, one

can use the chain rule to obtain H(ai|β, b = i) ≤ H(ai+β(mod 2)|b = i) = H(Pi), where

Pi is the successful probability for Bob to guess ai. Therefore, the mutual information

becomes

I ≥
k−1∑
i=0

[1−H(Pi)]. (1.45)

Here, in order to reveal the Tsirelson bound from IC, one needs a specific strategy to use

the no-signaling box. One way is to nest many two-inputs/two-outputs no-signaling boxes.

In this way, Alice’s database ~a = (a0, a1, ..., ak−1) has k = 2n elements with n an integer.

Guessing ab perfectly is Bob’s task. Thus, Bob is given n-bit string ~y = (y0, y1, ..., yn−1)

used to encode b = Σn−1
i=0 yi2

i. Alice’s output of the i-th box is denoted as A(i), similarly

B(i) for Bob. One may need to nest k − 1 two-inputs/two-outputs no-signaling boxes to

solve the task. Let us take k = 4 and m = 1 task for example. The RAC protocol is

described in Fig. 1.2. Since there are 4 elements in Alice’s database, she can divide them

into two subset and therefore each subset has two elements. As for the k = 2 simplest

RAC protocol, she can then encode each subset as the input of the no-signaling box. In

this case, Alice can input a0 + a1 in the first box and then send α(1) = A(1) + a0 to

make Bob able to guess a0 and a1. Similarly, she inputs a2 + a3 in the second box and

sends α(2) = A(2) + a2 for the same purpose. Note that, Alice only allows to send 1 bit,

thus she needs the third box to make Bob able to guess α(1) and α(2). Similarly, Alice

inputs α(1) + α(2) and sends the bit α = A(3) + α(1) to Bob. On the other hand, suppose

Bob’s task is to guess a0, the bit b = 0 is encoded as ~y = (y0 = 0, y1 = 0). Therefore,

Bob inputs y0 and y1 in the first and the third box, respectively. Bob can get α(1) by

calculating α+B(3). Similarly, he can then use the output B(1) of the first box to get a0

by calculating α(1) + B(1). Therefore, Bob’s optimal guessing bit β = α + B(3) + B(1).

This communication protocol can be generalized to any k = 2n case.

In this RAC protocol, the successful probability for Bob to guess ab right is given by

Pnb =
1

2
(1 + En−s1 Es2), (1.46)
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Figure 1.2: The RAC protocol for k = 4 task

where Ei is related to the successful probability Pi (1.43) in the k = 2 RAC protocol, the

relation is Ei = 2Pi − 1. The value of s depends on the encoded vector ~y, the definition

of s is s =
∑n−1

i=0 yi.

Now, we are ready to calculate the bound from IC. Put (1.46) into I (1.45) and impose
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the condition 1−H(1+Z
2 ) ≥ Z2

2ln2 , we can then obtain

I ≥
k−1∑
b=0

[1−H(Pnb )],

=

n∑
s=0

 n

s

 [1−H(
1

2
(1 + En−s1 Es2))],

≥ 1

2 ln 2

n∑
s=0

 n

s

 (E2
1)n−s(E2

2)s,

=
1

2 ln 2
(E2

1 + E2
2)n. (1.47)

One can find that if

E2
1 + E2

2 > 1, (1.48)

then the mutual information I will be bigger than 1 for some n, i.e., IC is violated.

Recall the definition (1.43) of the successful probability Pi , one can rewrite the con-

straint as

(C0,0 + C1,0)2 + (C0,1 − C1,1)2 > 4. (1.49)

In fact, this is nothing but the violation of Uffink’s quadratic inequality [41]. Consider

the special case, let P1 = P2 = P and therefore E1 = E2 = E. In this case, IC will be

violated while 2E2 > 1. Recall the relation between the successful probability and the

CHSH function (1.44), one can find that the Tsirelson bound is violated while E > 1√
2
.

This case shows that the Tsirelson bound emerges from IC.

1.2.3 Information Causality and the boundary of quantum correlations

The authors in [35] tried to answer that if IC can recover the entire quantum boundary

or not. In their proof, they considered the simplest case, n = 1, k = 2 RAC protocol and

the quantum correlations for two-inputs/two-outputs no-signaling box. They studied the

no-signaling correlations by several two dimensional slices of the non-signalling polytope,

that is equivalent to considering the following noisy PR-box.

PRλ,µ = λPR + µB + (1− λ− µ)I, (1.50)

where PR is the PR-box and B could be another extremal non-local box (1.37) or local

deterministic box (1.36). Thus, the noisy PR-boxes can be grouped into two families. In
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[35], the Uffink’s inequality (1.49) is taken as the condition for the violation of IC. On

the other hand, they imposed two quantum constrains to obtain the quantum boundary.

These constraints correspond to different families of noisy PR boxes. Finally, one may

compare the condition for the violation of IC and the quantum boundary. Two results

were arrived in [35]. First, the bi-partite quantum correlations satisfy IC. Second, only

parts of the quantum boundary emerges from IC.

For the first family, B is one of the extremal non-local box (1.37) except the PR

one. In this family, the marginal probabilities Pr(Ax|x) and Pr(By|y) are uniform. The

correlation functions Cx,y can be rewritten as

C0,0 = λ+ (−1)γµ, C0,1 = λ+ (−1)β+γµ, C1,0 = λ+ (−1)α+γµ, C1,1 = λ+ (−1)α+β+γµ,

(1.51)

where α, β and γ are used to label the types of extremal non-local boxes (1.37). For

fixed α, β and γ (or equivalently, a chosen extremal non-local box B), one could plug

(1.51) into the condition (1.49) for the violation of IC so that IC and the noisy PR-box

are related. For example, if (α, β, γ) = (0, 1, 0), one may find that IC is violated when

λ2 + µ2 >
1

2
. (1.52)

On the other hand, if a set of correlation functions Cx,y can be reproduced by the

quantum system (quantum operators and quantum state), this set of correlation functions

need to satisfy the following quantum condition,

|C0,0C1,0 − C0,1C1,1| ≤
∑
j=0,1

√
(1− C2

0,j)(1− C2
1,j). (1.53)

The above condition was proposed by Landau [42], and an equivalent set of conditions

were proposed by Masanes [43] expressed in different form. Note that, if (1.53) is satisfied

by a set of correlation functions Cx,y, the corresponding marginal probabilities Pr(Ax|x)

and Pr(By|y) must be uniform. As for the condition for the violation of IC, for fixed α,

β and γ, one can plug (1.51) into the quantum condition (1.53) and find the associated

quantum boundary. For example, when (α, β, γ) = (0, 1, 0), the boundary of quantum

correlations and the condition for the violation of IC are the same. In this case, the

quantum boundary emerges from IC. However, this is not always true, for example for

(α, β, γ) = (1, 1, 1). There are some non-quantum correlations satisfying IC. This does
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not mean IC cannot exclude these non-quantum correlations, because if one use another

strategy for the protocol such as nesting some non-quantum boxes mentioned in the

previous subsection, these non-quantum boxes may violate IC.

In the second family of the noisy PR-box, B is the local deterministic box considered

in (1.36). Among these local boxes, one could consider the special ones which lie on

the CHSH facets of the polytope of locality discussed in section 1.3.2. Therefore, the

parameters of these special boxes given by (1.36) should satisfy αγ + β + δ = 0 mod 2.

As for the first family, one can use the parameters of the noisy PR-box given in (1.50) to

rewrite the correlation function Cx,y. For example, if (α, β, γ, δ) = (0, 0, 0, 0), one then

obtains

C0,0 = C0,1 = C1,0 = λ+ µ,C1,1 = µ− λ. (1.54)

Note that, the marginal probabilities Pr(Ax|x) and Pr(By|y) are no longer uniform.

Therefore, the marginal correlations Cx and Cy are not zero. The marginal correlations

are the linear combinations of the marginal probabilities. The definition for marginal cor-

relations is Cx = Pr(Ax = 0|x) − Pr(Ax = 1|x) and Cy = Pr(By = 0|y) − Pr(By = 1|y).

Here, the marginal correlations Cx=0 = Cx=1 = Cy=0 = Cy=1 = µ. In this case, the

quantum constraint (1.53) is not suitable for picking up the quantum correlations. In-

stead, one may use the following condition and its three symmetric partners by shifting

the minus sign. These conditions include the marginal correlations, i.e.,

| arcsin(D0,0) + arcsin(D0,1) + arcsin(D1,0)− arcsin(D1,1)| ≤ π, (1.55)

where Dx,y = Cx,y−CxCy√
(1−C2

x)(1−C2
y)

. This condition was proposed in [44, 45]. Note that, (1.55) is

the quantum constraint in the first step of the hierarchal semidefinite programming [45].

This means, if a set of correlation functions Cx,y, Cx and Cy satisfies (1.55), we could

not make sure if it could be reproduced by a quantum system, unless it can satisfy all

the quantum constraint in each step of the hierarchical semidefinite programming. Plug

all the correlation functions (1.54) into the quantum constraint (1.55), one can obtain

the associated quantum boundary. Similarly, plug (1.54) into the condition (1.49) for the

violation of IC, one may find that IC is violated when (λ + µ)2 + λ2 > 1
2 . In this case,

the quantum boundary from the quantum constraint (1.55) and the condition of IC are

not the same. There are some non-quantum correlations satisfying IC. As for the case in
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the first family, one may use another strategy such that these non-quantum correlations

will still violate IC.

However, with the above examples, one may only know that quantum correlations

satisfy IC and could not make sure if IC can exclude all the non-quantum correlations.

Moreover, one may find there are some assumptions and approximations in arriving the

condition (1.48) for the violation of IC. Therefore, instead of using this condition, we

directly calculate the mutual information I of the quantum correlations and then compare

with IC. See Chapter 3 for more details.
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1.3 Signal propagating and noisy computation

Signal propagating suffers signal decay. It is a very important issue when considering

communication systems. On the other hand, one could image the noisy computation as

a sequence of steps [49]. Each step has an input and an output. The output has some

information about the associated input, and the output will be the input of the next

step. Once some step produces a random noise, one can interleave some parallel step

to control the error rate of the entire computation. In this way, each step of the noisy

computation can be seen as a noisy communication channel. Thus, one may expect that

the issue of signal decay will also appear for the noisy computation. von Neumann was

the first to be aware of this fact [47]. He suggested that the error of the computation

should be treated by thermodynamical method as the treatment for the communication

in Shannon’s work [46]. This means that, for the noisy computation, one should use some

information-theoretic methods related to the noisy communication. After thirty years

from the publication of von Neumann’s work, Pippenger took some information theoretic

arguments to study the reliable noisy computation [48]. After that, Evans and Schulman

proposed a new result for the efficient signal propagating and then use it to study the

threshold of noisy computation [50, 51]. In this section, we want to review Evans and

Schulman’s work and also compare it with the previous results obtained by von Neumann

and Pippenger.

1.3.1 The efficient propagation through a noisy channel

In the process of signal propagation, we will face the problem of signal decay. To be

specific, it is manifested through the data processing inequality. Consider two commu-

nication channels and three random variables. Let variable X be the input of the first

channel, the variable Y is the output of the first channel and also is the input of the

second one, and the variable Z is the output of the second channel, i.e., the cascade of

two communication channels: X → Y → Z. No matter what are the properties of the

communication channels, the data processing inequality states that

I(X;Z) ≤ I(X;Y ). (1.56)

The mutual information I(X;Y ) = H(Y ) −
∑

i Pr(X = i)H(Y |X = i), where H(Y )

and H(Y |X) are the Shannon entropies for the probability Pr(Y ) and the conditional
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probability Pr(Y |X), respectively.

Here are some properties of the communication channel which we will use later. If a

communication channel has m inputs and n outputs, this communication channel could

be expressed by a m × n matrix. The (i, j)-th element of this matrix is the conditional

probability of obtaining the output j under the condition of the input i. Let us take the

binary channel for example. A general binary channel is specified by

A =

 sin2 α cos2 α

cos2 β sin2 β

 . (1.57)

Let the random variables G and F be the input and output of the binary channel A,

respectively. Since the output probability can be expressed as Pr(F = j) =
∑1

i=0 Pr(F =

j|G = i) Pr(G = i), we can plug in the elements of the channel to obtain Pr(F = 0) =

sin2 αPr(G = 0) + cos2 β Pr(G = 1) and Pr(F = 1) = cos2 αPr(G = 0) + sin2 β Pr(G =

1). Note that, there is a special channel called the symmetric channel. The rows of

the symmetric channel are cyclic under permutations, so are the columns. The binary

symmetric channel has the following form:

A =

 1+ξ
2

1−ξ
2

1−ξ
2

1+ξ
2

 , (1.58)

where ξ is the noisy parameter and 0 ≤ ξ ≤ 1.

Now, we can study the new result proposed by Evans and Schulman. Naively, by the

data processing inequality one may expect the upper bound of the ratio I(X;Z)
I(X;Y )

to be

1. In [48], Pippenger proposed that the upper bound of the ratio I(X;Z)
I(X;Y ) for the binary

symmetric channel should be tighter than 1. In [50, 51], Evans and Schulman further

gave the upper bound of the ratio I(X;Z)
I(X;Y ) for the general binary channels. It is amazing

that this bound is a function of the second communication channel in the the process of

signal propagation. If the second channel is specified by (1.57), one can obtain the upper

bound of the ratio I(X;Z)
I(X;Y ) to be sin2(α − β). For the binary symmetric channel (1.58),

the maxima of the ratio I(X;Z)
I(X;Y ) is ξ2. Note that, this bound is tighter than ξ proposed by

Pippenger [48].

Evans and Schulman used the following fact to reduce the complexity of the proof. They

found that the maxima of the ratio I(X;Z)
I(X;Y ) is achieved when the conditional probabilities

Pr(Y |X = 0) and Pr(Y |X = 1) are almost indistinguishable. This condition implies that
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the mutual information between the variables X and Y are very small. Therefore, we

can know that propagating weak signal is the most efficient way to avoid signal decay in

a noisy channel. After reducing to the weak signal case, the problem of maximizing the

ratio I(X;Z)
I(X;Y ) becomes much simpler because the ratio I(X;Z)

I(X;Y ) can be expressed as the ratio

of the relative entropy D(p‖q) :=
∑

x Pr(p = x) log Pr(p=x)
Pr(q=x)

. Thus, the ratio I(X;Z)
I(X;Y )

does

not depend on Pr(X). We then have

I(X;Z)

I(X;Y )
=
D((~p+ ~ε) · A ‖ ~p · A)

D(~p+ ~ε ‖ ~p)
+O(ε), (1.59)

where ~p is the probability Pr(Y ) and ~p + ~ε is the conditional probability Pr(Y |X = 0).

Consider the normalization condition, ~ε could have the form of (ε, 1−ε). Note that, for the

weak signal case, ε should be sufficiently small. One can then maximize the leading term

of the expansion of (1.59) over the probabilities ~p (or equivalently Pr(Y = 0)). Finally,

we can obtain the maxima of the ratio I(X;Z)
I(X;Y )

to be sin2(α−β) as proposed by Evans and

Schulman.

In Chapter 2 and 3, we will combine the bounds on the ratio I(X;Z)
I(X;Y ) and IC to obtain

the Tsirelson-type inequalities for the two-level systems and also the form of the Bell-type

inequality for the multi-level systems.

1.3.2 The noisy computation

1.3.2.1 The model of noisy computation

Before studying how to implement the new result for signal propagation in noisy computa-

tion, we need to discuss the model of noisy computation in a more precise way. Modeling

the computation as a sequence of steps is more convenient for us to connect the compu-

tation and the communication but is not precise enough. The more precise model was

proposed by von Neumann in 1952 [47]. It is described in Fig.1.3.

The model of noisy computation is a noisy circuit. The circuit has n Boolean inputs and

one Boolean output. Note that, the entire circuit is used to compute the Boolean function

f : {0, 1}n → {0, 1} and is constructed by many gates which correspond to the vertices

in Fig.1.3. Each gate has a fixed number of Boolean inputs and one Boolean output. In

Fig.1.3, the edge from vertex a to b corresponds to the variable as the output of gate a

and the input of gate b. Assuming these connections are directional and do not allow any

feedback. Therefore, the entire circuit is a directional and acyclic graph. Note that, the
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Figure 1.3: The model of noisy computation

number of the outgoing edges for each gate does not have to be one. If each gate only has

only one outgoing edge, the circuit then has the tree structure. One may call the circuit

a formula. The following jargons are used to characterize the model of computation.

• Depth: The depth is the number of gates in the longest path of the circuit.

• Size: The size is the number of the gates in the entire circuit.

In this model, for each gate, the unsuccessful probability for obtaining the Boolean func-

tion is ε. This means that, we cannot always have the perfect computation for the entire

circuit. However, we can study the reliable computation. The circuit is the reliable com-

putation, if we can obtain the Boolean function of the n inputs f : {0, 1}n → {0, 1} with

the (1− δ) ≥ 1
2 successful probability.

1.3.2.2 The tolerable error rate and the depth for a reliable computation.

For the reliably computational circuit, the error rate for each gate and the depth of the

circuit are the essential values because both of them will affect the successful probability

for the entire computation.

31



In [47], von Neumann calculated the tolerable error rate for the reliable computation. In

von Neumann’s computation circuit, each gate has three inputs. The reliable computation

can be achieved by the noisy gates when the error rate ε of each gate is independent and

less than 1
6 . In this case, the error rate could not be arbitrary for reliable computation.

On the other hand, one may increases the depth of the circuit to control the successful

probability for the entire computation. Since the computational time is increased with

bigger depth of the circuit, the price to pay for the reliable noisy computation is the

computational time.

Moreover, in [48] Pippenger used the information-theoretic method to prove that the

limit of ε and the longer time are required for the reliably noisy formulas (tree structure

of the circuits). Let x1, x2, ..., xn be the Boolean inputs of the circuit. In Pippenger’s

proof, for any input xm, one can obtain that the output of the noiseless circuit is equal

to xm or the complement of xm while the other n − 1 inputs correspond to a specific

setting so that the circuit is noiseless. Therefore, with this specific setting, the output O

of the reliable circuit should be strongly correlated with the input xm. In this information

theoretical setup, it implies that the mutual information between xm and the output O

of the reliable circuit should be high enough. Since we know that the structure of the

noisy gates affects the mutual information between the input xm and the output O, the

total information flow from the input xm to the output O is bounded by the summation

of information flow for each path p from xm to the output O. According to this condition,

Pippenger obtained the upper bound of the mutual information

I(xm;O) ≤ Σpξ
|p|, (1.60)

where |p| is the number of the gates in the path p from xm to O and the error rate for

each gate is ε = 1−ξ
2 .

With this inequality, Pippenger then obtained the lower bound of the depth for the

reliable circuit. Assuming n inputs of the circuit and that each gate has at most k inputs.

Note that, the error rate for each gate ε = 1−ξ
2 . Pippenger then obtained the constraint

for the depth c of the 1− δ ≥ 1
2 -reliable circuit as follows:

• (i) if ξ > 1
k then c ≥ log(n∆)/ log(kξ) ,

• (ii) if ξ ≤ 1
k then n ≤ 1/∆,
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where ∆ := 1 + δ log δ + (1 − δ) log(1 − δ). For k = 3 case, one may find the tolerable

error rate 1
3 is higher than the one in the von Neumann’s argument. On the other hand,

the lower bound of the depth must increase. Here, the lower bound of the noiseless circuit

is logk n and one may multiply it by at least 1
(1+logk ξ)

to obtain the lower bound of the

depth for the noisy circuit. Moreover, when the error rate is higher than the tolerable

one, the number of inputs cannot be arbitrary and it will be limited by ∆. However, since

Pippenger’s argument only works for the formulas, we are not sure if the above bounds

on the error rate and the depth also hold for the other circuits.

Pippenger used three inequalities to obtain the upper bound (1.60) on the mutual

information. The first one is the data processing inequality. Assuming the gateG produces

the output Y with inputs Yi for i ∈ {1, ..., k}. The mutual information between the

essential input xm and Y is smaller than the one between xm and Y1, Y2, ..., Yk, i.e.,

I(xm;Y ) ≤ I(xm;Y1, Y2, ..., Yk). The second one is I(xm;Y1, Y2, ..., Yk) ≤
∑

i I(xm;Yi).

This inequality holds when we can obtain the information about xm from Yi independently.

Therefore, the second inequality holds for the formulas but may not be satisfied by other

circuits. In [51], one example (in Fig.1.4) can show that the inequality does not hold any

more. In this example, Y2 is the input for both of the gates which are noiseless NOR

gates 1. Therefore, one can know xm by Y1 and Y2, i.e., I(xm;Y1, Y2) = 1. Note that,

xm could not be obtained when one only knows Y1 or Y2, i.e., I(xm;Y1) = I(xm;Y2) = 0.

Obviously, in this case, I(xm;Y1, Y2) >
∑2

i=1 I(xm;Yi).

The third ingredient is I(xm, Z) ≤ ξI(xm;Y ), where Z is the output for the other gate

with the input Y . One can image Z = Y +V , where V is a Boolean variable and its value

is 1 with probability 1−ξ
2 and 0 with probability 1+ξ

2 [48]. With this assumption, one may

obtain the third inequality. Note that, this inequality also implies I(xm,Z)
I(xm;Y ) ≤ ξ.

In order to obtain the lower bound of the depth for more general circuits, Evans

and Schulman overcame the difficulty for the second inequality and modified the third

inequality [50, 51]. Instead of summing over the individual mutual information between

xm and Yi, Evans and Schulman directly calculated the bound of the mutual information

between xm and a set of random variables. On the other hand, for the third inequality,

they had an impressive modification. They found that the noisy gate could correspond

a binary symmetric channel given by (1.58). According to the proof in the previous

1When both the inputs of the NOR gate are 0, the output will be 1, otherwise the output is 0

33



       

   
   

   

  

XOR1 

XOR2 

Figure 1.4: The example for the failure of inequality I(xm;Y1, Y2, ..., Yk) ≤
∑
i I(xm;Yi)

subsection, instead of ξ implied by the third inequality, one could obtain the upper bound

of the ratio I(xm;Z)
I(xm;Y ) to be ξ2. Therefore, one can modify the third inequality to be

I(xm, Z) ≤ ξ2I(xm;Y ).

Using these modifications, one can then obtain the upper bound of the mutual infor-

mation, i.e.,

I(xm;W ) ≤ Σpξ
2|p|, (1.61)

where W is used to denote the set of variables and |p| is the number of the gates on the

path p from xm to W . Note that, if W is the output O, one may find this upper bound

is tighter than (1.60). Similar to Pippenger’s argument, one may use this upper bound

to obtain the lower bound of the depth c for the 1− δ ≥ 1
2 -reliable circuit using the gates

with at most k inputs. The results are as follows:

• (i) if ξ2 > 1
k then c ≥ log(n∆)/ log(kξ2) ,

• (ii) if ξ2 ≤ 1
k then n ≤ 1/∆,
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where ∆ := 1 + δ log δ + (1− δ) log(1− δ), and the error rate for each gate is ε = 1−ξ
2 .

Compare this result with the ones from von Neumann’s and Pippenger’s arguments,

one can find two things. The first one is that, the threshold of the error rate for each

gate becomes looser. For the reliable computation with k = 3 gates, von Neumann

showed it can be achieved when ε < 1
6 , and the error rate requires ε < 1

3 for Pippenger’s

argument. For the same case, Evans and Schulman showed that the threshold error

rate is 1
2(1 − 1√

3
) which is bigger than the ones from von Neumann and Pippenger’s

arguments. The second one is that, the lower bound of the depth is bigger than the one

from Pippenger’s arguments. As known that in order to achieve the reliable computation

using the noisy gates, one needs to increase the depth of the noisy circuit. Here, the lower

bound of the depth for the noiseless circuit is logk n. From Pippenger’s arguments, one

needs to multiply it by 1
(1+logk ξ)

to obtain the lower bound of the depth for the noisy

circuit. On the other hand, Evans and Schulman obtained that one needs to multiply it

by 1
(1+logk ξ

2) . Thus, one may need more time to realize the reliably noisy computation.

In Chapter 2, we will use the bound on the error rate to check if IC allows the 1−δ ≥ 1
2 -

reliable computation.
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1.4 Semidefinite programming and the quantum correlations for
the bi-partite systems

Since the joint probability (1.26) can describe the correlation shared by two distant par-

tites, therefore if one want to ensure the shared correlation is quantum, one need to check

if the corresponding joint probabilities can be reproduced from quantum mechanics or

not. This is a very important issue because one can know the quantum limitation for

some information-theoretic tasks and the non-local nature of the quantum correlations.

However, the quantum correlations cannot form a polytope. Therefore, unlike the no-

signaling and the local correlations, the quantum correlations cannot be described by a

finite set of joint probabilities which correspond to the vertices of the polytope.

On the other hand, in the previous sections, we have seen that quantum correlations

may violate the Bell-type inequalities. However, not all the maximally quantum violation

of these inequalities could be found analytically. Therefore, one may need some numerical

methods to find the maximally quantum violation of these Bell-type inequality.

Semidefinite programming (SDP) is the procedure of optimizing a linear function sub-

jected to certain conditions associated with a positive semidefinite matrix X. A positive

semidefinite matrix X should satisfy the condition v†Xv ≥ 0 for v ∈ Cn, and is denoted

by X � 0. The standard primal problem of SDP is as follows. Given the n×n symmetric

matrices C and Dq’s with q = 1, · · · ,m, we like to optimize the n×n positive semidefinite

matrix X � 0 such that we can achieve the following:

minimize Tr(CTX) (1.62a)

subject to Tr(DT
q X) = bq, q = 1, · · · ,m . (1.62b)

Each primal problem of SDP has a corresponding dual problem. One can solve the maxi-

mization problem whenever both the optimal solutions for the primal and the dual prob-

lems are the same. One can see the Appendix C for more details about the corresponding

dual problem.

In this subsection, we want to review how to find the maximally quantum violation of

the Bell-type inequalities and how to bound the quantum correlations by this numerical

tool, SDP.
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1.4.1 The quantum correlations for two-level quantum systems

In [56], Wehner used SDP to find the maximally quantum violation of more general

CHSH-type inequalities. These inequalities are based on the measurements for the bi-

partite quantum systems. Each partite could have many measurement settings and each

measurement setting produces two outcomes. The essential point of Wehner’s work is to

use the theorem proposed by Tsirelson [53, 55].

1.4.1.1 Characterizing quantum correlations by Tsirelson’s theorem

In order to formulate the problem of finding the Tsirelson bound as a SDP, one needs

to use Tsirelson’s theorem [53, 55] to characterize the quantum correlations. Assuming

there is a quantum state |Ψ〉 ∈ A
⊗

B shared by two distant observers Alice and Bob.

Alice’s observable Xx (x ∈ {0, 1, 2, ..., t − 1}) could produce the outcome Ax ∈ {−1, 1}.

Similarly, Bob’s observable Yy (y ∈ {0, 1, 2, ..., v−1}) has the outcome By ∈ {−1, 1}. The

correlation function Cx,y is the expectation value for the product of their outcomes, i.e.,

AxBy, i.e., Cx,y = 〈Ψ|XxYy|Ψ〉. Tsirelson’s theorem states that the correlation function

Cx,y can be expressed by the inner product of two real vectors of unit norm αx, βy ∈ Rt+v,

i.e.,

Cx,y = αx · βy. (1.63)

Note that, t and v are the numbers of Alice’s and Bob’s measurement settings, respectively.

With this statement, we could rewrite CHSH-type inequalities in terms of vectors.

On the contrary, let αx (x ∈ {0, 1, 2, ..., t− 1}) and βy (y ∈ {0, 1, 2, ..., v − 1}) be two

sets of operators of unit norm in Rn. Let d = 2[n
2

], and |Ψmax〉 = 1√
d

∑d
i=1 |i, i〉 be the

maximally entangled state. There then exists the quantum observables such that

αx · βy = 〈Ψmax|XxYy|Ψmax〉 = Cx,y. (1.64)

Note that, making measurement on the maximally entangled state with observables Xx

and Yy implies the zero of the marginal expectation value [57], i.e., 〈Ψmax|Xx⊗I|Ψmax〉 =

〈Ψmax|I⊗Yy|Ψmax〉 = 0. However, it means that these sets of unit vectors allow quantum

representation and could be reproduced by the quantum systems.
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1.4.1.2 The maximally quantum violation for the CHSH-type inequalities

With the Tsirelson’s theorem, we can cast the problem of finding the Tsirelson bound for

multi-setting CHSH-type inequalities as a problem of SDP. To be specific, let us take the

CHSH inequality as an example. According to the Tsirelson’s theorem, one may rewrite

the CHSH function C0,0 +C0,1 +C1,0 −C1,1 in terms of vectors of unit norm αx and βy.

After rewriting, the optimal problem is as follows:

maximize α0β0 + α1β0 + α1β0 − α1β1, (1.65a)

s.t. ‖α0 ‖= ‖α1 ‖= ‖β0 ‖= ‖β1 ‖= 1. (1.65b)

One should rewrite this problem into the primal problem of SDP (1.62) by constructing

the matrices X, C and Ai’s from the vectors of unit norm αx and βy.

As shown in [56], the vectors αx and βy can be used to construct a positive semidefinite

matrix G. Note that, this matrix G is the Gram matrix of the vectors α0, α1, β0 and β1,

i.e.,

G =


α0 · α0 α0 · α1 α0 · β0 α0 · β1

α1 · α0 α1 · α1 α1 · β0 α1 · β1

β0 · α0 β0 · α1 β0 · β0 β0 · β1

β1 · α0 β1 · α1 β1 · β0 β1 · β1

 .

Let the matrix B = (α0α1β0β1), where the rows of B correspond the vectors α0, α1, β0

and β1, respectively. Therefore, one can rewrite the matrix G = BTB. For any v ∈ Cn,

v†Gv = v†BTBv = w†w ≥ 0, where we denote the vector Bv as w. Obviously, G is indeed

a positive semidefinite matrix.

If one rewrite the matrix G in terms of correlation function Cx,y, one can obtain the

necessary and sufficient condition for the quantum correlation as follows:

G =


1 θ1 C0,0 C0,1

θ1 1 C1,0 C1,1

C0,0 C1,0 1 θ2

C0,1 C1,1 θ2 1

 � 0, (1.66)

where θ1 and θ2 correspond to the measurements performed on the same partite and

therefore they are not commutative. If a set of correlations Cx,y allows quantum repre-

sentation, one can then find the valid θ1 and θ2 to make condition (1.66) satisfied. Note
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that, this condition and the conditions proposed by Masanes [43] and Landau [42] are

equivalent.

Compare our problem (1.65) to the standard form of SDP (1.62), one may define

X = G, and then one can define a matrix C by

C =
1

2


0 0 1 1

0 0 1 −1

1 1 0 0

1 −1 0 0

 .

Now, one may consider the constraint on these quantum correlations (or equivalently the

vectors of unit norm). Since the vectors α1, α2, β1 and β2 are unit normed, the diagonal

element of matrix G, called gii, must be one. The primal problem becomes

maximize Tr(CG), (1.67a)

s.t. gii = 1 , ∀i (1.67b)

G � 0. (1.67c)

With the above procedure, one could formulate the problem of finding the Tsirelson

bound as a problem of SDP. Note that, this procedure is only suitable for the two-level

quantum systems. After defining the associated matrixes and vectors in the standard

SDP, one could use the numerical recipes to solve the SDP such as SeDuMi [62] and

CVXOPT [63]. For the well known CHSH inequality, the Tsirelson bound from the

numerical evaluations is equal to the analytical solution, 2
√

2.

1.4.2 The quantum correlations for more general quantum systems

Navascués, Pironio, and Aćın showed how to check if a given set of joint probabilities

could be reproduced by quantum mechanics or not [44, 45]. To do this, they found a

hierarchy of conditions to test it. Each condition in the hierarchy could be formulated as

a SDP. Therefor, once the given set of joint probabilities fails the test at some step of the

hierarchical SDP, one may judge that these joint probabilities are non-quantum.

There are two applications for the hierarchy of conditions. The first one is to find

the more general condition for entire quantum correlations. The second one is find the

maximally quantum violation of the more general Bell-type inequalities. Since we have
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already discussed the first application in (1.55), we will just focus the second in the

following.

1.4.2.1 The constraints for bi-partite quantum probabilities

Two distant observers Alice and Bob share a bi-partite system. Alice and Bob possess

local observables X and Y on their own systems, respectively. They then obtain the

corresponding outcomes a ∈ A and b ∈ B. Here A and B are used to denote the set

of all possible Alice’s and Bob’s measurement outcomes, respectively. We use X(a) and

Y (b) to denote the corresponding observables. The correlation between Alice and Bob is

characterized by the joint probabilities Pr(a, b)’s. As described in (1.30), once the joint

probabilities Pr(a, b)’s allow a quantum representation, they can be determined by the

shared quantum state ρ and the projection operators Ea and Eb as following:

Pr(a, b) = Tr(EaEbρ). (1.68)

Note that (1.68) is the abbreviation of (1.30), i.e., Pr(Ax, By|x, y) = Tr(EAx
EBy

ρ). There-

fore, one may ask the question, can we find the corresponding quantum state and projec-

tion operators for the given joint probabilities?

Assuming that the given joint probabilities Pr(a, b)’s admit a quantum representation,

so that they have the corresponding quantum state and projection operators. Since the

corresponding projection operators should satisfy some conditions, the given joint proba-

bilities should also satisfy the associated conditions. Thus, one could study the quantum

constraints for the joint probabilities Pr(a, b) by studying the conditions for the projec-

tion operators. The genuine quantum operators Ea and Eb shall satisfy (i) hermiticity:

E†a = Eb and E†b = Eb; (ii) orthogonality: EaEa′ = δaa′ if X(a) = X(a′) and EbEb′ = δb,b′

if Y (b) = Y (b′); (iii) completeness: Σa∈XEa = I and Σb∈YEb = I; and (iv) commutativity:

[Ea, Eb] = 0.

Using these projection operators {Ea : a ∈ A} and {Eb : b ∈ B}, we can construct a

set of operators O = {O1, O2, ..., Oi, ...}. Here Oi is some linear function of products of

operators in {Ea : a ∈ B} ∪ {Eb : b ∈ B}. The set O has an associated matrix Γ given by

Γij = Tr(O†iOjρ). (1.69)

By construction, Γ is non-negative definite, i.e.,

Γ � 0. (1.70)
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This can be easily proved as follows. For any vector v ∈ Cn (assuming Γ is a n by n

matrix), one can have

v†Γv = Σs,tv
∗
sTr(O†sOtρ)vt = Tr(V †V ρ) ≥ 0. (1.71)

Due to the definition (1.69) for the matrix Γ and the relation (1.68) between the joint

probabilities Pr(a, b)’s and the projection operators, one may find the joint probabilities

Pr(a, b)’s are then encoded in the matrix Γ. Note that, the elements of the matrix Γ

should satisfy the following conditions:

Σi,jci,jΓi,j = 0 if Σi,jci,jO
†
iOj = 0. (1.72)

Σi,jci,jΓi,j = Σa,bda,b Pr(a, b) if Σi,jci,jO
†
iOj = Σa,bda,bEaEb. (1.73)

These constraints reflect the conditions on the projection operators. Let us consider

the simplest case. Both two distant partites Alice and Bob have two observables and

each observables have two kinds of outcomes. We denote the projection operators as

Ei (i ∈ {1, 2, 3, ..., 8}). E1 and E2 correspond to Alice’s first observable; E3 and E4

correspond to Alice’s second observable. Similarly, E5, E6, E7 and E8 correspond to Bob’s

first and second observables, respectively. Let the operators Oi = Ei (i ∈ {1, 2, 3, ..., 8}).

Therefore, the associated matrix Γ is a 8 × 8 matrix. When consider the properties of

projection operators, the element of Γ should be constrained. These constraints are as

follows:

• Consider the aforementioned property (ii) of the operators Ei’s, the product of two

projection operators must be zero when these two projection operators belong to

same observable, i.e., E1E2 = E3E4 = E5E6 = E7E8 = 0, therefore Γ1,2 = Γ3,4 =

Γ5,6 = Γ7,8 = 0.

• Because OiOj = EiEj , when i ∈ {1, 2, 3, 4} and j ∈ {5, 6, 7, 8}, Γi,j should be the

joint probability Pr(a = i, b = j − 4).

• Consider the property (ii) EiEi = Ei (i ∈ {1, 2, ..., 8}), the diagonal elements Γi,i =

Pr(a = i) for i ∈ {1, 2, 3, 4} and Γi,i = Pr(b = i− 4) for i ∈ {5, 6, 7, 8}.

• Consider the property (iii),
∑2

k=1Ek+2gEj = Ej (g ∈ {0, 1, 2, 3}). Therefore,∑2
k=1Ok+2gOj = Oj and thus

∑2
k=1 Γk+2g,j = Pr(a = j) for j ∈ {1, 2, 3, 4}. Other-

wise,
∑2

k=1 Γk+2g,j = Pr(b = j − 4).
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Note that these equations also hold when permuting the operators as Tr(EaEbρ) =

Tr(EbEaρ). Moreover, we can make the matrix Γ to be real and symmetric by redefining

it as Γ = (Γ∗ + Γ)/2.

With these conditions, one can determinate the corresponding parameter ci,j and da,b

in (1.72) and (1.73) to list all the conditions. Therefore, once the given set of the quantum

probabilities Pr(a, b)’s allows the quantum representation (1.68), for any set of operators

O the associated Γ matrix should satisfy the quantum constraints (1.70), (1.72) and (1.73).

1.4.2.2 Bounding the quantum correlations with the hierarchal semidefinite programming

We have known that for any set of operator O, the associated matrix Γ should satisfy

the quantum constraints (1.70), (1.72) and (1.73). Thus, the existence of such a matrix

is the necessary condition for the quantum probability Pr(a, b). Since the conditions for

the matrix Γ is related to the constraints on some positive semidefinite matrix, thus one

may use SDP to test the existence of the matrix Γ satisfying all the quantum constraints

(1.70), (1.72) and (1.73). Note that, if the joint probability Pr(a, b) does not allow a

quantum representation, the associated SDP problem for some operators O does not have

the solution.

Since different operator sets O’s yield different quantum constrains (1.70), (1.72) and

(1.73), there are too many quantum constraints needed for thhe test. In [44], the au-

thors found that these constraints have a hierarchical structure such that one may use

a systematic way to test them. In the first step of this hierarchical SDP, one may take

single projection operators {Eµ} to form the operator set O, where {Eµ} = {Ea}∪ {Eb}.

In the second step, one can take the product of projection operators {EµEν} to form O

besides the ones in the first step, where {Eµ} = {Eν} = {Ea} ∪ {Eb}. One can then take

{EµEνEκ} to form O in the third step besides the ones in the previous steps, and so on.

Therefore, the infinite sequence of the operator sets leads to a hierarchical SDP.

When joint probabilities Pr(a, b) satisfy the n-th step of the hierarchical SDP, we denote

the collection of these joint probabilities Pr(a, b) as Qn. Since we know that the associated

constraints are stronger than ones in the previous steps of the hierarchical sequence, the

collection Qn will become smaller for the higher n. That is, the non-quantum correlations

will definitely fail the test at some step in the hierarchical SDP.
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1.4.2.3 The maximally quantum violation for the general Bell-type inequality

Any Bell-type inequality can be written as the linear combination of the joint probabilities,

thus the hierarchical SDP can be used to approach the maximally quantum violation of

the Bell-type inequality. Since the quantum constraint is stronger in the hierarchical SDP

and the collection of Qn will become smaller while n is increasing. We then know that

the bound of Bell-type inequality becomes tighter for larger n and it may converge to the

quantum bound for large enough n.

One can try to find the quantum violation of the d-level Bell-type inequality (the

CGLMP inequality [8]). In [58], the best-known lower bound of the maximally quantum

violation for the CGLMP inequality (d ≤ 8) has been obtained. Using the hierarchal SDP

to approach the bound of quantum violation, one may find that the best-known bound of

quantum violation in [58] is equal to the bound given by the second step of the hierarchal

SDP. Therefore, one may obtain the maximally quantum bound in the finite step of SDP.

In Chapter 3, we will write down the associated SDP for finding the maximally quantum

violation for the general Bell-type inequality more precisely.
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Chapter 2

Information Causality and Noisy
Computations

2.1 Introduction

As a physical theory, quantum mechanics has been extremely successful in describing the

microscopic physics. Nevertheless, its current framework is incapable of explaining the

nature of quantum entanglement. Attempts to remedy this situation have been made

by reconstructing quantum mechanics in terms of physical principles. These physical

principles should be able to yield or constrain the non-local correlation implied by the

quantum entanglement. One such candidate is the principle of space-time causality. This

principle will constrain the possible non-local correlation such that any physical theory

must be no-signaling [21], i.e., signal cannot be send in the way of violating causality.

However, a broad class of no-signaling theories other than quantum mechanics exist.

Certain features, usually thought of as specifically quantum, are common for many of

these theories [11, 12]. Clearly, no-signaling is insufficient as a principle to single out

quantum mechanics.

Some of these theories are allowed to have more non-local correlation than quantum

mechanics [11, 12, 15, 17, 18]. Specifically, the non-local correlation in these theories

can violate Bell-type inequalities by more than Tsirelson’s bound [21, 53]. From this

perspective, we should search for a physical principle as follows. The principle can single

out Tsirelson’s bound as a limitation on the extent of the allowed correlation for a physical

theory. With the advent of quantum information science, some principles of information

theoretic flavor have been proposed. These proposed candidates set the constraints on

the physically realizable correlations. In this Letter, we focus on a promising candidate —

the information causality. Information causality states that, in a bipartite code protocol

prepared with any physically local or non-local resources, the accessible information gain

cannot exceed the amount of classical communication. In [29, 31] information causality

is demonstrated by a generic task similar to random access codes (RAC) and oblivious
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transfer. In this task, a database of k bits is prepared: ~a := (a0, a1, · · · , ak−1), where each

ai is a random variable, which is only known by the first party, Alice. A second, distant

party, Bob, is given a random variable b ∈ (0, · · · , k−1) along with a bit α send by Alice.

With the bit α and the pre-shared correlation with Alice, Bob’s task is to optimally guess

the bit ab. Then, according to information causality the quantity I has an upper bound

I =

k−1∑
i=0

I(ai; β|b = i) ≤ 1 . (2.1)

Here I(ai; β|b = i) is the Shannon mutual information between ai and Bob’s guessing bit

β under the condition b = i. Classically, I can reach 1 once α = ai and I(ai; aj) = δij (

i.e., the Kronecker delta).

To perform the RAC task, Alice and Bob can use (earlier prepared and distributed)

correlations among either classical or quantum systems. These no-signaling correlation

resources can be simulated by the no-signaling box (NS-box). The NS-box correlates the

inputs and outputs of Alice and Bob in an imperfect way subjected to the probabilistic

noise. The noise of NS-box is intrinsically inherited from the underlying physical theory

such as quantum mechanics. The quantity I in (2.1) is unavoidably affected by the

intrinsic noise of NS-box. In this framework, the signal decay theorem in [50, 51] for a

noisy circuit is exploited to yield a tight bound for I(ab; β|b) in terms of noise of NS-box.

According to information causality, the tight bound should also obey the upper bound

in (2.1). By expressing the tight bound in terms of correlation functions between Alice’s

and Bob’s measurement outcomes, this then yields our main result — a broad class of

multi-setting Tsirelson-type inequalities. As a result, we can then subject the physical

principle of information causality to scrutiny by experimentally verifying or falsifying the

generalized Tsirelson’s bounds.

Without classical communication, the RAC can be regarded as nonlocal computation.

Therein, distant Alice and Bob compute a general Boolean function without knowing the

other’s input. Here, NS-box can be regarded as a noisy gate for non-local computation

[51]. Noise of the gate is closely related to the reliability of non-local computation. The

computational noise of the gate is related to the intrinsic reliability of the physically real-

ized NS-box. In this aspect, we can tackle a fundamental question on noisy computation

with its nonlocal version. As raised by von Neumann [47], this question is originally

stated as follows. Could physical circuits of finite size perform the reliable noisy non-local
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computation of any Boolean function? Based on constraint by the information causality

for any physical circuit, we will see that the answer is negative in non-local computation.

2.2 Tsirelson-type inequalities from the information causality

We start by reformulating the NS-box as a noisy distributed gate for nonlocal compu-

tation. The NS-box is initially distributed between two distant parties, Alice and Bob.

Locally, Alice and Bob input bit strings ~x and ~y, respectively, into half of the box, which

then outputs bits A~x and B~y, respectively. The lengths of the bit strings can be cho-

sen by design. Our NS-box is further characterized by the conditional joint probabilities

Pr
[
A~x +B~y = f(~x, ~y) |~x, ~y

]
. Therein, f(~x, ~y) is the task function. Notably, if the NS-box

is physically realizable, these joint probabilities must fulfill the no-signaling conditions.

In the RAC protocol, the chosen task function f(~x, ~y) depends on how we encode

Alice’s database ~a and Bob’s given random variable b into ~x and ~y, respectively. From

now on, we will implicitly use the following protocol. Firstly, Alice encodes her database

~a into the (k − 1)-bit string ~x := (x1, · · · , xk−1) by xi = a0 + ai. Alice’s half of NS-box

then produces an outcome A~x. At the same time, Bob encodes the given b in to (k−1)-bit

string ~y := (y1, · · · , yk−1) by yi = δb,i for b 6= 0, and ~y = ~0 for b = 0. Bob’s half of NS-box

then produces an outcome B~y. Secondly, Alice sends Bob a bit α = a0 +A~x. The optimal

strategy for Bob’s task is to output a guess bit β = α+B~y. As a result, Bob can decode

Alice’s bit ab successfully whenever A~x + B~y = ~x · ~y (modulo 2) is true. Most of the

calculations in this Letter are modulo-2 defined.

In quantum mechanics, Alice’s and Bob’s outcomes can be produced by performing the

corresponding measurement of 2k−1 and k settings, respectively. For the above protocol,

the success probability of Bob’s task in guessing Alice’s bit ab is related to the one for

noisy computation as follows

Pr[β = ab|b ] =
1

N~x

∑
{~x}

Pr
[
A~x +B~y = f(~x, ~y)|~x, ~y

]
, (2.2)

where N~x is the cardinality of the input space spanned by the encoding {~x}. By defining

the correlation functions between Alice’s and Bob’s measurement outcomes as C~x,~y :=∑
A~x=0,1

∑
B~y=0,1(−1)A~x+B~y Pr

[
A~x, B~y |~x, ~y

]
, we find

ξ~y =
1

N~x

∑
{~x}

(−1)f(~x,~y)C~x,~y. (2.3)
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where the coding noise parameter is defined as ξ~y := 2 Pr [β = ab |b ]− 1. The sub-index

~y of ξ~y is understood to be equivalent to Bob’s given parameter b via encoding.

One of the main results of this paper is a broad class of Tsirelson’s bound implied by

information causality, i.e.,

|
∑
{~y}

ξ~y | =
1

N~x
|
∑
{~x},{~y}

(−1)f(~x,~y)C~x,~y | ≤
√
k . (2.4)

For k = 2, it is easy to check that (2.4) is the Tsirelson’s bound |C0,0+C0,1+C1,0−C1,1| ≤

2
√

2 [53]. For the case of k > 2 with f(~x, ~y) = ~x · ~y, we have verified (2.4) to be

the Tsirelson’s bound in quantum mechanics by using the semidefinite programing [61].

Please see appendix D for more detailed discussions.

Indeed, later we will see that information causality will render (2.4). This implies

that information causality can be tested by experimental verification or refutation via the

measurement of the correlation functions of a quantum system.

In order to arrive the Tsirelson’s bound (2.4) from the information causality constraint

(2.1), we need to relate I(ab, β|b) to ξ~y. It turns out that this can be done by using the

following signal decay theorem on the signal propagation [50, 51].

Theorem 1: Let X, Y and Z be Boolean random variables. Consider a cascade of two

communication channels: X ↪→ Y ↪→ Z. X and Y are the input and the output of the

first channel, respectively. Let Y in turn be the input of a cascading binary symmetric

channel Cε with a noise parameter ε, i.e.,

Cε =

 1
2(1 + ε) 1

2(1− ε)
1
2(1− ε) 1

2(1 + ε)

 .

Let Z be the output of Cε, (i.e., Z = Y with the bit-flipping probability 1
2(1− ε))

I(X;Z)

I(X;Y )
≤ ε2. (2.5)

A special case arises if the first channel is noiseless or trivial, i.e., I(X;Y = X) = 1 such

that I(X;Z) ≤ ε2. Note also that regardless of the properties of the second channel, there

is a data processing inequality I(X;Z) ≤ I(X;Y ).

We apply this theorem to our RAC protocol as follows. Because Alice’s database

a0, a1, · · · , ak−1 are random variables and independent of each other, so that all the aj ’s

with j 6= i can be fixed without disturbing I(ai ; β|b). Let X = ai, Y = a0 + f(~x, ~y) , and
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Z = β. Here Y is Bob’s ideal answer and hence I(X;Y ) = 1. The coding noise ε for our

protocol is ξ~y, then according to the Theorem 1, we have

I(ai ; β|b = i) ≤ ξ2
~y . (2.6)

Therefore, the information causality in Eq. (2.1) yields

I ≤
∑
{~y}

ξ2
~y ≤ 1. (2.7)

In [29, 31], similar inequalities are derived to avoid the divergence of I, which justifies the

information causality. However, such trouble does not exist in our reformulation because

of the tight bound of Theorem 1. With the help of (2.3) the second inequality in (2.7)

becomes a quadratic Tsirelson-type inequality for the correlation function C~x,~y. Moreover,

using the Cauchy-Schwarz inequality, we can obtain |
∑
{~y} ξ~y| ≤

√
k, which results in the

linear Tsirelson inequality of Eq. (2.4).

2.3 Noisy nonlocal computation

In the previous discussion we have considered the information causality using a single

nonlocal NS-box. Instead, we can treat the NS-box as a non-local gate for performing

the nonlocal computation, i.e., computing the function f(~x, ~y) [51]. Unlike using the

same gate for the RAC, no classical communication between Alice and Bob is required to

perform the nonlocal computation. In details, Alice’s and Bob’s local outputs are A~x and

B~y, respectively. The computation is successful if A~x +B~y = f(~x, ~y). The computational

noise parameter is defined as

ε~x,~y := 2 Pr[A~x +B~y = f(~x, ~y)|~x, ~y]− 1. (2.8)

From (2.8) and (2.3) the computational noise of the gate is related to its coding noise by

ξ~y =
1

N~x

∑
{~x}

ε~x,~y . (2.9)

Basically, computational errors inherently come from the gate noise. Information causality

constraints the noisy extent of the NS-box as a gate. From this perspective, information

causality is deeply connected with nonlocal computation.

Furthermore, we can combine the NS-box gates to form a more complicated circuit

without worrying about the coding protocol. Then the total task function for the whole
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Figure 2.1: RAC protocol for a (n, k, l)-circuit. Each vertex of the circuit corresponds to a
NS-box, with its details shown in the big ellipses.

circuit will be a complicated function, i.e., a composite of task functions of all NS-boxes.

We can then try to answer the following fundamental question: could a noiseless (nonlocal)

computation be simulated using a noisy nonlocal physical resource?

Specifically, we consider the so-called (n, k, l)-circuit, G, formed by cascading layers

of noisy gates into a circuit in the form of a directed, acyclic tree (see Fig 1). On the top

of G, there are n inputs to the NS-boxes — the leaves; at the bottom there is only one

NS-box — the root. The longest path from the leaves to the root is called the depth of

the circuit, denoted by l. The maximum input number of a gate in G is k. Note that,

in [29] G comprises k = 2 gates and is exploited to compress n bits of ~x into one bit A~x.

However, there is no restriction on the task function for each NS-box, as long as the final

circuit is a consistent acyclic tree diagram.

We then use the circuit G to perform the following nonlocal computation. Alice’s n-
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bit database ~a := (a0, a1, · · · , an−1) is given to the leaves of G, and a conditional input

b ∈ {0, 1, · · · , n− 1} is given to the distant Bob. The previous encoding ~a→ −→x and b→

~y for the RAC protocol, is also exploited here. Alice’s output is properly encoded and

then fed into the NS-box at the next layer, again with Bob’s conditional input. The same

procedure is performed recursively until reaching the root, with its output as the answer

to the total task function at the root.

Alternatively, Bob’s decoding gates can be thought to be noise free, and the com-

putational noise is only due to Alice’s encoding gates, and vice versa. This makes it

easier to understand the above procedure of noisy computation. Now we can consider the

information flow of G.

Theorem 2: For a noisy, local circuit G with an arbitrary depth, the root outputs at

most one-bit information.

Note that the circuit G can perform the RAC if the appropriate protocol is given at

each layer and 1-bit communication is allowed for the whole process. Then, the above

theorem implies that information causality holds true for the circuit G.

To prove the theorem, we will show that the mutual information between the leaves

and the root of G is bounded by one. This can be done by mathematical induction

as follows. We begin with a circuit of depth one, which is nothing but a single NS-

box; information causality ensures the bound. We then assume that the bound holds

true for a circuit of depth `. According to information causality and sub-additivity, the

mutual information I
(m)
` between the leaves and the root obeys I

(m)
` ≤

∑
im
I(Xim ;Rm) =∑

im
I(Xim ;Rm|Bob’s knowledge) ≤ 1, where the index m labels a collection of circuits

of depth ` with root Rm, and the index im labels the inputs of the m-th circuit. Now, we

construct a circuit of depth ` + 1 by connecting all roots Rm’s to a single NS-box whose

output is R. Then, the mutual information I`+1 between leaves and root R of the final

circuit should obey the subadditivity, i.e., I`+1 ≤
∑

m

∑
im
I(Xim ;R). From Theorem 1,

we have I(Xim ;R) ≤ ξ2
mI(Xim ;Rm) because we have a cascade of two channels: Xim ↪→

Rm ↪→ R where the second channel is a binary symmetric one with the noise ξm. Using

this result, we have I`+1 ≤
∑

m ξ
2
m

∑
im
I(Xim ;Rm) ≤

∑
m ξ

2
m ≤ 1. Q.E.D.

Here, we have only considered the case in which the computational noise is isotropic

to ~x, denoted by ε~y. From (2.9) we have ε~y = ξ~y and the information causality requires∑
{~y} ε

2
~y ≤ 1. We would like to know whether the reliable computation is also constrained
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by the information causality or not. To check this, we invoke the main Evans-Schulman

theorem on the conditions for reliable noisy computation as follows [50, 51].

Evans-Schulman Theorem: A circuit of complete k-ary tree with depth l ( i.e., n = kl)

can perform δ-reliable noisy computation only

• (i) if
∑
{~y} ε

2
~y > 1 then ` ≥ log(n∆)/ log(

∑
{~y} ε

2
~y) ,

• (ii) if
∑
{~y} ε

2
~y ≤ 1 then n ≤ 1/∆,

where ∆ := 1 + δ log δ+ (1− δ) log(1− δ). The computation is called δ-reliable if the root

outputs correctly with a probability 1− δ (with δ < 1/2). This theorem provides stricter

conditions than the original proposal by Von Neumann [47, 48].

By definition, smaller ε~y means larger noise, and the condition (ii) is for the cases with

larger noise such that only functions with a smaller number of inputs can be reliably

computed. Immediately, we see that information causality implies a large computational

noise for the RAC circuit such that only condition (ii) for reliable noisy computation can

possibly be fulfilled. As a result, Alice’s output asymptotically becomes random because

∆→ 0 and hence δ → 1
2 as n→∞. In summary, this implies that information causality

prevents any physically realizable (n, k, l)-circuit from achieving reliable computations of

excessively complicated functions, i.e., with either too many inputs or lengthy steps needed.

The above result applies only when classical communication between Alice and Bob is

disallowed. Under such circumstances, the noise of the gate is intrinsically constrained by

the underlying physical theory. Otherwise, the classical communication can be exploited

to improve the reliability of the gates so that the no-go result could be lifted.

2.4 Summary

In this chapter, we show how information causality leads to Tsirelson bounds in a much

easier way. A series of new Tsirelson bounds are then derived. Deep ramifications con-

cerning non-local quantum computation are also found and discussed.
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Chapter 3

Testing Information Causality for
General Quantum Communication

Protocols

3.1 Introduction

The advantage of quantum information over the classical one in the computing and com-

munication has been well exploited in the past decades. The abstract form of this advan-

tage in the communication process is termed as communication complexity [25]. Despite

of the seemingly non-local feature of quantum entanglement employed in the quantum

communication process, its communication complexity is bounded and not maximal 1.

Recently, the bound is formulated for general physical theories and is termed as informa-

tion causality [29], which states that the maximal mutual information shared between the

sender and receiver in a communication protocol with the resources based on physical the-

ories cannot exceed the amount of classical communication. The criterion of information

causality selects a subset of non-signaling theories, including quantum mechanics.

If the information causality holds for all the realistic communication processes, it can

be erected as a new physical principle to formulate the fundamental theories from the in-

formation theoretical point of view. Moreover, one may wonder if the quantum mechanics

is equivalent to the theories saturating the non-local bound given by information causality.

Or, the quantum mechanics cannot saturate the information causality. However, most of

the tests on the above questions are performed only for two-level quantum communication

protocols. Especially, in [32] it was shown that the non-local bounds from information

causality exactly coincide with the generalized Tsirelson inequalities for a particular set

of two-level quantum protocols (of multi-settings). Related tests based on information

causality and macroscopic locality2 [34] was done in [36].
1In [24], by sharing a PR-box [21], any distributed decision problem can be solved with perfect success with only one

bit communication. This means the communication complexity is trivial. Therefore, the communication complexity is
related to the non-locality. Thus, in this paper we use the terms ”the communication complexity” and ”the non-locality”
interchangeably when we discuss the non-local correlations.

2Macroscopic locality states that any physical theory should recover classical physics in the continuum limit, i.e., the
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It is then interesting to test the information causality over quantum mechanics for

more general quantum communication protocols, e.g. multi-level ones 3. In this work,

we will make efforts along this direction, namely, we will try to find the maximal bound

of the mutual information shared between sender and receiver for multi-level quantum

communication protocols, and compare with the bound from information causality.

In our communication protocol, Alice has a database of k elements, denoted by the

vector ~a = (a0, a1, , , ak−1). Each element ai is a d-level random variable and is only known

by Alice. A second distant party, Bob is given a random variable b ∈ 0, 1, 2, , , k − 1. The

value of b is used to instruct Bob to optimally guess the d-level bit (d-bit) ab after receiving

a d-bit α sent from Alice via the pre-shared correlation between Alice and Bob. In this

context, the information causality can be formulated as follows:

I =

k−1∑
i=0

I(ai; β|b = i) ≤ log2 d . (3.1)

where I(ai; β|b = i) is Shannon’s mutual information between ai and Bob’s guess d-bit

β under the condition b = i. The bound is the amount of the classical communication

encoded in α.
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Figure 3.1: The NS-box and the channel

To be specific, we use the random access code (RAC) to encode Alice’s data base ~a

probability distributions of large number particles should satisfy the Bell’s inequalities.
3In this paper, using the non-uniform Pr(ai) or the more general communication channels such as the asymmetric and

anisotropic channels is belonged to the more general communication protocols.
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into ~x := (x1, · · · , xk−1) with xi = ai − a0, and Bob’s input b into ~y := (y1, · · · , yk−1)

with yi = δb,i for b 6= 0 and ~y = 0 for b = 0. Besides, the communication protocol is

also supplemented by the pre-shared correlation, called the non-signaling box (NS-box).

The above ~x and ~y are the inputs of the NS-box, and their corresponding outcomes are

denoted by A~x and B~y, respectively. Therefore, the NS-box and thus the communication

protocol is characterized by the conditional joint probabilities Pr(A~x, B~y|~x, ~y) satisfying

the following non-signaling conditions:∑
B~y

Pr(A~x, B~y|~x, ~y) = Pr(A~x|~x) and
∑
A~x

Pr(A~x, B~y|~x, ~y) = Pr(B~y|~y), ∀~x, ~y.

(3.2)

This implies that superluminal signaling is impossible.

Here, we shall mention that the mutual information in (3.1) is referred to the channel

characterized by the conditional probability Pr(β|ai, b = i) with RAC decoding β =

α + B~y, which relate the outcome β of the channel to its input ai and b. Note that

the channel probability Pr(β|ai, b = i) cannot be completely determined only by the

conditional joint probability Pr(A~x, B~y|~x, ~y) but also by the input marginal probability

Pr(ai). In a sense, the flow of the NS-box is perpendicular to the flow of the channel, this

is schematically shown in Fig 3.1. We will see that the difference of these two flows will

be relevant in how to maximize the mutual information I in (3.1).

Naively, one will formulate the whole problem as maximizing the mutual information

I of the protocol characterized by Alice’s input marginal probabilities Pr(ai) and the

channel derived from the quantum correlations. To proceed, we have to make sure the

whole problem can be formulated as a convex optimization problem [61, 64] so that some

numerical recipes such as [63] can be utilized for maximizing I. However, we will show

that this is not a convex problem if we would like to maximize I by varying over the

input marginal probability Pr(ai) and the joint probability Pr(A~x, B~y|~x, ~y) of NS-box 4.

Therefore, in this way the numerical recipe [63] cannot be applied to finding the mutual

information bound for information causality. Observe that our problem here is different

from the usual way of determining the channel capacity. The usual way of finding the

channel capacity for a given channel, i.e., fixing Pr(β|ai, b = i), is to maximize the mutual

information I over the input marginal probability Pr(ai). This is the convex optimization
4In fact, the mutual information I defined in (3.1) depends on Pr(ai) and only Pr(B~y − A~x|~x, ~y) not the full

Pr(A~x, B~y |~x, ~y). Thus, later when referring to the joint probability of NS-box, it will in fact mean Pr(B~y − A~x|~x, ~y)
though we may use the expression Pr(A~x, B~y |~x, ~y).
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problem and can be solved numerically by the recipe such as [63].

To by-pass this no-go situation, a naive way is to maximize I over Pr(ai) and Pr(A~x, B~y|~x, ~y)

by brutal force numerically without relying on convex optimization. The viability is, how-

ever, restricted by the computational power and cannot work for complicated protocols,

like the ones with multi-level and multi-setting. Despite that, we will try some simpler

cases and verify that the bound by information causality may not be the same as the

generalized Tsireslon bound associated with the quantum non-locality.

The other way of by-passing the no-go is to consider some special cases such that the

generalized Tsireslon bound agrees with the bound for information causality. With the

suitable object for quantum communication complexity, e.g. the CHSH function in Bell

inequality, maximizing the object in determining the optimal quantum channel is a convex

optimization problem. Thus, we need to find the special conditions such that the mutual

information I is monotonically increasing with the object for quantum communication

complexity. Therefore, we can then by-pass the no-go and find the bound on information

causality for quantum channels. For such cases, maximizing mutual information over

quantum channel is the same as finding the generalized Tsireslon bound. This is also the

way adopted in this work.

Before the proof, one important issue is to find the appropriate object of communication

complexity which is called Bell-type function in [56, 44, 45]. For the two-level protocols,

the CHSH correlation function gives the natural object for the communication complexity.

Moreover the Tsirelson theorem helps to yield the Tsirelson inequalities to constraint

Pr(A~x, B~y|~x, ~y) of the NS-box. However, for the multi-level protocols, there is neither

analogy CHSH correlation as a natural object for the communication complexity, nor the

Tsirelson-type inequalities to yield suitable Bell-type inequalities for quantum constraint.

Despite that, one found an alternative way to derive the Tsirelson inequalities for two-level

protocols in [32], and it will be generalized for the multi-level protocols in this paper. This

is based on the signal decay theorem [50, 51]. Consider a cascade of two communication

channels: X ↪→ Y ↪→ Z with the second channel being binary and symmetric with a noise

parameter ξ. Then,
I(X;Z)

I(X;Y )
≤ ξ2. (3.3)
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Applying this to our protocol of RAC and NS-box, one can arrive

I(ai ; β|b = i) ≤ ξ2
i (3.4)

where ξi is the coding noise parameter and can be expressed in terms of the joint proba-

bility Pr(A~x, B~y|~x, ~y) and the input marginal probability Pr(ai). Assuming independent

and identically distributed(i.i.d.) for ai’s, we can then sum over i to obtain bound on I.

Using the Cauchy inequality, one can linearize the above quadratic inequality to arrive∑
i

ξi (3.5)

as the object for communication complexity, Furthermore, assuming uniform probabilities

for all Alice’s database ai’s, we showed in [32] that the information causality can be

formulated as |
∑

i ξi| ≤
√
k, and is exactly equivalent to the Tsirelson-type inequalities

for two-level protocols. Recently, similar considerations can also be found in [40, 52].
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Figure 3.2: Scheme for maximizing the mutual information I over quantum channels.

Instead of deriving as a mathematical theorem, the above derivation of (3.5) for

Tsirelson-type inequalities is based on physical content of the communication protocols,
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and can be generalized to the multi-level cases. This is one of the main tasks of this paper.

To by-pass the no-go as described, we only consider the i.i.d. inputs {ai} with uniform

Pr(ai), in the symmetric and isotropic channels. The symmetric channel is defined as

usual, and the isotropic channel means that the noise parameter for NS-box is uniform,

i.e., ξi is independent of i. Based on these assumptions, we can show that I and (3.5) are

monotonically related so that maximizing I is equivalent to maximizing (3.5). One can

then use the standard semidefinite programming (SDP) [61, 64] algorithm which also is

a linear convex optimization programming to build up the quantum channel. Based on

these quantum channels with uniform Pr(ai) one can further calculate the mutual infor-

mation I. This is schematically shown in Fig 3.2. In this way, we can test the information

causality over the the more generic multi-level quantum communication protocols.

The above discussions are for multi-level symmetric channels. Although we can trans-

fer the maximizing mutual information I to the convex optimization problem, it needs

many assumptions. If we would like to consider the asymmetric and anisotropic channels

with possibly the non-uniform Pr(ai), how can we do? Instead of using convex optimiza-

tion, we are forced to use brutal force method which we mentioned before. That is, we

have to pick up all the sets of quantum correlation Pr(A~x, B~y|~x, ~y) and input marginal

probability Pr(ai) and then evaluate the corresponding mutual information I. We com-

pare all of them to find the maximal one. In this way, we find that the boundaries for

the information causality and the quantum non-locality may not agree. That means, for

general communication channels, maximizing mutual information I over quantum chan-

nels is not equivalent to finding the generalized Tsireslon bound. However, due to the

demanding computational resources in numerical optimization, we will only consider the

two-level and two-setting case.

The paper is organized as follows. In the next section we will define our communication

protocols based on RAC and NS-box and then derive the objects for the communication

complexity of symmetric quantum channels with i.i.d. and uniform input marginal prob-

abilities. In section 3.3, we will show that maximizing the mutual information I over

joint probabilities Pr(A~x, B~y|~x, ~y) and input marginal probabilities Pr(ai) is not a convex

optimization problem and also prove that (3.5) and the mutual information I are mono-

tonically related. In section 3.4, we will briefly review the SDP algorithm proposed in

[44, 45] and then apply it to maximize (3.5) numerically for the multi-level symmetric
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channels with i.i.d. and uniform input marginal probabilities. Our numerical results for

the maximal quantum non locality will be used to evaluate the corresponding mutual

information I and compare to the information causality. In 3.5, we will use brutal force

to maximize the mutual information I for more general communication channels. Finally,

in section 3.6 we will summary our paper with some discussions.

In appendix A, we briefly review the signal decay theorem for binary channels men-

tioned in [50, 51] and then generate it to multi-nary channels. In appendix B, we give a

proof that mutual information I is not a concave function to joint probabilities and input

marginal probabilities. In appendix C, the standard primal and dual problem for SDP are

defined. We can rewrite our problem as the standard form and use numerical recipes to

solve it. In appendix E, we write down the quantum constraints for the first and second

step of the convex optimization programming. We also estimate the number of quantum

constraints and explain how to write down these constraints efficiently.

3.2 Multi-level Bell-type inequality from signal decay theorem

In the Introduction, we have briefly describe our communication protocol for two distant

partite Alice and Bob: Given one encoded d-bit α by Alice and one random number b,

Bob needs to optimally guess ab in Alice’s database ~a := (a0, ..., ak−1). In this task, Bob

can use the pre-shared correlations simulated by NS-box, whose inputs are the Alice’s

encoded d-bit-string ~x and Bob’s ~y as mentioned previously. The corresponding outputs

of the NS-box are A~x and B~y, respectively. More specifically, the d-bit sent by Alice

is α = A~x − a0, and the pre-shared correlation is defined by the conditional probability

Pr(B~y−A~x = ~x·~y|~x, ~y) between the inputs and outputs of the NS-box. Accordingly, Bob’s

optimal guessing d-bit β can be chosen as B~y − α. This is because β = B~y − A~x + a0 =

~x · ~y + a0 as long as B~y − A~x = ~x · ~y holds. In this case, Bob guesses ab perfectly. Take

d = 3 and k = 3 as an example for illustration: Bob’s optimal guess bit is

β = ~x · ~y + a0 = (a1 − a0, a2 − a0) · (y0, y1) + a0. (3.6)

If Bob’s input ~y = (y0, y1) = (0, 0), β = a0; if ~y = (y0, y1) = (1, 0), β = a1; and if

~y = (y0, y1) = (0, 1), β = a2. Bob can guess ab perfectly.

Using the above communication protocol, Alice and Bob have dk−1 and k measure-

ment settings respectively, and each of the measurement settings will give d kinds of
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outcomes. However, the noise of the NS-box affects the communication complexity

so that Bob can not always guess the d-bit ab correctly with the pre-shared corre-

lation. If the NS-box is a quantum mechanical one, then the conditional probability

Pr(B~y − A~x = ~x · ~y|~x, ~y]) should be constrained by the quantum non-locality, so is the

joint probability Pr(A~x, B~y|~x, ~y). Then the question is how? For d = 2 and k = 2,

the quantum constraint comes from the well-known Tsirelson inequality. That is, the

CHSH correlation function C~x,~y, which can be expressed in terms of joint probability as

Pr(00|~x, ~y) − Pr(01|~x, ~y) − Pr(10|~x, ~y) + Pr(11|~x, ~y) for uniform output marginal proba-

bilities, is the object for quantum communication complexity bounded by 2
√

2. This is

the constraint for Pr(A~x, B~y|~x, ~y) to be consistent with quantum mechanics.

However, there is no known Tsirelson inequality for the cases with d > 2. Despite that,

in [32], we find a systematic way to construct d = 2 multi-setting Tsirelson inequalities by

the signal decay theorem [50, 51]. We will generalize this method to d > 3 case to yield

suitable objects for quantum communication complexity. To proceed, we first recapitulate

the derivation for d = 2 cases.

Signal decay theory tells the loss of mutual information when processing the data

through a noisy channel. Consider a cascade of two communication channels: X ↪→ Y ↪→

Z, then intuitively we have

I(X;Z) ≤ I(X;Y ). (3.7)

Moreover, if the second channel is a binary symmetric one, i.e.,

Pr(Z|Y ) =

 1
2(1 + ξ) 1

2(1− ξ)
1
2(1− ξ) 1

2(1 + ξ)

 ,

then the signal decay theorem says

I(X;Z)

I(X;Y )
≤ ξ2. (3.8)

This theorem has been proven as the tight bound in [50, 51]. Note the equality is held

only when propagating the weak signal for noisy the channel Pr(Z|Y ). i.e., Pr(Y |X = 0)

and Pr(Y |X = 1) are almost indistinguishable. For more detail, please see appendix A.

In [32], we defined X = ai, Y = a0 +~x ·~y and Z = β. On purpose, the bit ai is encoded

as a0 + ~x · ~y such that I(ai; a0 + ~x · ~y) = 1. Using the tight bound of (3.8), in this case we

can get

I(ai ; β|b = i) ≤ ξ2
i . (3.9)
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For our communication protocol, the noise parameter ξi is denoted as ξ~y and can be

related to Alice’s input marginal and the joint probability of the NS-box as follows:

1 + ξ~y
2

=
∑
{~x}

Pr(~x) Pr
(
B~y − A~x = ~x · ~y|~x, ~y

)
. (3.10)

Assuming that Alice’s database is i.i.d., we can then sum over mutual information

between β and ai to arrive ∑
i

I(ai ; β|b = i) ≤
∑
i

ξ2
i . (3.11)

Though this object is quadratic, we can linearize it by the Cauchy-Schwarz inequality,

i.e., |
∑

i ξi| ≤
√
k
∑

i ξ
2
i . For d = k = 2 case with uniform input marginal probabilities

Pr(ai), it is easy to show that
∑

i ξi ≤
√

2 (or
∑

i ξ
2
i ≤ 1) is nothing but the conventional

Tsirelson inequality. Moreover, in [32] we use the SDP algorithm in [56] to generalize to

d = 2 and k > 2 cases and show that the corresponding Tsireslon’s inequalities are∑
i

ξi ≤
√
k. (3.12)

This is equivalent to say
∑

i ξ
2 ≤ 1. From the signal decay theorem (3.9) we find that

it implies the quantum communication complexity is consistent with the information

causality (3.1).

We now generalize the above construction to d > 2 cases. First, we start with d = 3

case by considering a cascade of two channels X ↪→ Y ↪→ Z with the second one a 3-input,

3-output symmetric channel. Again, we want to find the upper bound of I(X;Z)
I(X;Y ) . In the

Appendix A we show that the ratio saturates the upper bound whenever three conditional

probabilities Pr(Y |X = i) with i = 0, 1, 2 are almost indistinguishable. Moreover, it can

be also shown that the upper bound of the ratio is again given by (3.8) for the symmetric

channel between Y and Z specified by

Pr(Z|Y ) =


2ξ+1

3
1−ξ

3
1−ξ

3

1−ξ
3

2ξ+1
3

1−ξ
3

1−ξ
3

1−ξ
3

2ξ+1
3

 . (3.13)

One can generalize the above to the higher d cases for the symmetric channel between

Y and Z specified as follows: Pr(Z = i|Y = i) = (d−1)ξ+1
d and Pr(Z = s 6= i|Y = i) = 1−ξ

d

with i ∈ {0, 1, ..., d − 1}. Again we will arrive (3.8). Based on the signal decay theorem
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with X := ai, Y := a0 + ~x · ~y and Z := β and assuming that Alice’s input probabilities

are i.i.d., we can sum over all the mutual information between each ai and β,

k−1∑
i=0

I(β; ai|b = i) ≤
k−1∑
i=0

ξ2
i log2(d). (3.14)

In our communication protocol, the noise parameter ξi is denoted as ξ~y and can be

expressed as

ξ~y =
d
∑

~x Pr(~x) Pr(B~y − A~x = ~x · ~y|~x, ~y)− 1

d− 1
. (3.15)

As for the d = 2 case, we assume the upper bound of (3.14) is capped by the informa-

tion causality to yield a quadratic constraint on the noise parameters. Again, using the

Cauchy-Schwarz inequality to linearize the quadratic constraint, we find that the general-

ized inequality
∑

~y ξ~y ≤
√
k. This inequality could be the Tsirelson-type inequality and it

need to be checked. Especially, if the input marginal probabilities Pr(ai) are uniform, the

bound on the object
∑

~y ξ~y yields a constraint on Pr(A~x, B~y|~x, ~y). Therefore, we obtain

a proper object of characterizing non-locality:
∑

~y ξ~y with uniform Pr(ai).

Then, it is ready to ask the question: does the joint probabilities Pr(A~x, B~y|~x, ~y) giving

the maximal quantum non-locality saturate the upper bound of information causality?

Next, we are going to answer this question.

3.3 Convexity and mutual information

3.3.1 Feasibility for maximizing mutual information by convex optimization?

In order to test information causality for difference quantum communication protocols,

we have to maximize mutual information I over quantum channel and Alice’s input prob-

ability. One way is to formulate the problem as the convex optimization programming,

so that we may exploit some numerical recipes such as [63] to carry out the task.

Minimizing a function with the equality or inequality constraints is called convex op-

timization. The object function could be linear or non-linear. For example, SDP is a

kind of convex optimization with a linear object function. Regardless of linear or non-

linear object functions, the minimization (maximization) problem requires them to be

convex (concave). Thus, if we define the mutual information I as the object function for

maximization in the context of information causality, we have to check the concavity of

it.
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A concave function f(x) (f : Rn → R) should satisfy the following condition:

f(λx1 + (1− λ)x2) ≥ λf(x1) + (1− λ)f(x2), (3.16)

where x1 and x2 are n-dimensional real vectors, and 0 < λ < 1.

Mutual information between input X and output Z can be written as

I(X;Z) = H(Z)−H(Z|X) = H(Z)−
∑
i

Pr(X = i)H(Z|X = i), (3.17)

where H(Z) = −
∑

i Pr(Z = i) log2 Pr(Z = i) is the entropy function. We will study

the convexity of I(X;Z) by varying over the marginal probability Pr(X) and the channel

probability Pr(Z|X).

The following theorem is mentioned in [68]. If we fix the channel probability Pr(Z|X)

in (3.17), then I(X;Z) is a concave function with respect to Pr(X). This is the usual

way in obtaining the channel capacity i.e., maximizing mutual information I over input

marginal probability for a fixed channel.

However, in the context of information causality, the channel probability is related to

both the joint probability of the NS-box and the input marginal probability. This means

that the above twos will be correlated if we fix the channel probability. This cannot fit

to our setup in which we aim to maximize the mutual information I by varying over the

joint probability of NS-box and the input marginal probability. For example, in d = 2

and k = 2 case, the channel probability is given by

Pr(β|ai, b = i) =

 αi 1− αi
1− λi λi

 .

where

α0 := Pr(β = 0|a0 = 0, b = 0) =

1∑
`=0

Pr(By − Ax = 0|x = `, y = 0) Pr(a1 = `),

λ0 := Pr(β = 1|a0 = 1, b = 0) =

1∑
`=0

Pr(By − Ax = 0|x = `, y = 0) Pr(a1 = 1− `),

α1 := Pr(β = 0|a1 = 0, b = 1) =

1∑
`=0

Pr(By − Ax = `|x = `, y = 1) Pr(a0 = `),

λ1 := Pr(β = 1|a1 = 1, b = 1) =

1∑
`=0

Pr(By − Ax = `|x = `, y = 1) Pr(a0 = 1− `).

(3.18)
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From the above, we see that the channel probability Pr(β|ai, b = i) cannot be fixed by

varying over Pr(By − Ax|x, y) and Pr(ai) independently. Similarly, for higher d and k

protocols, we will also have the constraints between the above three probabilities. Thus,

maximizing the mutual information I by varying the NS-box in the context of information

causality is quite different from the usual way of finding the channel capacity.

To achieve the goal of maximizing the mutual information I over the NS-box, we should

check if it is a convex (or concave) optimization problem or not. If it is yes, then we can

adopt the numerical recipe as [63] to carry out the task. Otherwise, we can either impose

more constraints for our problem or just do it by brutal force. It is known that [67] one

can check if maximizing function f(y1, · · · , yn) over yi’s is a concave problem or not by

examining its Hessian matrix

H(f) =


∂2f
∂y21

∂2f
∂y1y2

· · · ∂2f
∂y1yn

∂2f
∂y2y1

∂2f
∂y22

· · · ∂2f
∂y2yn

...
...

. . .
...

∂2f
∂yny1

∂2f
∂yny2

· · · ∂2f
∂y2n

 . (3.19)

For the maximization to be a concave problem, the Hessian matrix should be negative

semidefinite. That is, all the odd order principal minors of H(f) should be negative and

all the even order ones should be positive. Note that each first-order principal minor of

H(f) is just the second derivative of f , i.e. ∂2f
∂y2i

. So, the problem cannot be concave if

∂2f
∂y2i

> 0 for some i.

With the above criterion, we can now show that the problem of maximizing I over

Pr(B~y − A~x|~x, ~y) and Pr(ai) cannot be a concave problem. To do this, we rewrite the

mutual information I defined in (3.1) as following:

I =

k−1∑
i=0

d−1∑
n=0

d−1∑
j=0

Pr(β = n, ai = j|b = i) log2
Pr(β = n, ai = j|b = i)

Pr(β = n|b = i) Pr(ai = j)
. (3.20)

Furthermore, one can express the above in terms of Pr(B~y − A~x|~x, ~y) and Pr(ai) by the

following relations

Pr(β = n, ai = j|b = i) =
∑
{ak 6=i}

Pr(B~y − A~x = n− a0|~x, ~y) Pr(ai = j) Πk 6=i Pr(ak),

Pr(β = n|b = i) =

d−1∑
j=0

Pr(β = n, ai = j|b = i), (3.21)
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where ~x and ~y in the above are given by the encoding of the RAC protocol, namely,

~x := (x1, · · · , xk−1) with xi = ai− a0 and ~y := (y1, · · · , yk−1) with yi = δb,i for b 6= 0 and

~y = 0 for b = 0.

Moreover, both Pr(B~y − A~x|~x, ~y) and Pr(ai) are subjected to the normalization con-

ditions of total probability. Thus we need to solve these conditions such that the mutual

information I is expressed as the function of independent probabilities. After that, we

can evaluate the corresponding Hessian matrix to examine if the maximization of I over

these probabilities is a concave problem or not.

For illustration, we first consider the d = 2 and k = 2 case. By using the relations

(3.21) and the normalization conditions of total probability to implement the chain-rule

while taking derivative, we arrive

ln 2 · ∂2I

∂(Pr(By − Ax = 0|x = 0, y = 0))2
=

−(
1

Pr(β = 0|b = 0)
+

1

Pr(β = 1|b = 0)
)(Pr(a0 = 0) Pr(a1 = 0)− Pr(a0 = 1) Pr(a1 = 1))2

+(Pr(a0 = 0) Pr(a1 = 0))2(
1

Pr(β = 0, a0 = 0|b = 0)
+

1

Pr(β = 1, a0 = 0|b = 0)
)

+(Pr(a0 = 1) Pr(a1 = 1))2(
1

Pr(β = 0, a0 = 1|b = 0)
+

1

Pr(β = 1, a0 = 1|b = 0)
). (3.22)

Obviously, (3.22) cannot always be negative. This can be seen easily if we set Pr(a0) =

1 − Pr(a1) so that the first term on the RHS of (3.22) is zero. Then, the remaining

terms are non-negative definiteness. This then indicates that maximizing I over the joint

probability is not a concave problem.

The check for the higher d and k cases can be done similarly, and the details can be

found in the Appendix B. Again, we can set all the Pr(ai) to be uniform so that we have

d2k ln 2 · ∂2I

∂(Pr(B~y − A~x = 0|~x = ~0, ~y = ~0))2
=

d−1∑
n=0

(
1

Pr(a0 = n, β = n|b = 0)
+

1

Pr(a0 = n, β = n+ 1− d|b = 0)
) > 0. (3.23)

3.3.2 Convex optimization for symmetric and isotropic channels with i.i.d.
and uniform input marginal probabilities

Recall that we would like to check if the boundaries of the information causality and the

quantum non-locality agree or not. To achieve this, we may either maximizing the mutual
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information I with the quantum constraint, or maximizing the quantum non-locality and

then evaluate the corresponding mutual information I which can be compared with the

bound of information causality. These two tasks are not equivalent but complementary.

However, unlike the first task, the second task will be concave problem as known in

[56, 45]. The only question in this case is if the corresponding mutual information I

is monotonically related to the quantum non-locality or not. If yes, then maximizing

quantum non-locality is equivalent to maximizing the mutual information I. The answer

is partially yes as we will show because this monotonic relation holds only for symmetric

and isotropic channels with i.i.d. and uniform input marginal probabilities.

Assuming Alice’s input is i.i.d., we have H(β|b = i) = log2(d). Also, once the channel

is symmetric, we have Pr(β = t|ai = j, b = i) = (d−1)ξi+1
d for t = j, and Pr(β = t|ai =

j, b = i) = 1−ξi
d for t 6= j. Thus, the mutual information I becomes

I = k log2 d+

k−1∑
i=0

[
(d− 1)ξi + 1

d
log2(

(d− 1)ξi + 1

d
) + (1− (d− 1)ξi

d
) log2(

1− ξi
d

)].(3.24)

If we also assume the channels are isotropic i.e., ξ~y = ξ, then for such a case the mutual

information I can be further simplified to

I = k[log2 d+
(d− 1)ξ + 1

d
log2(

(d− 1)ξ + 1

d
) + (1− (d− 1)ξ

d
) log2(

1− ξ
d

)]. (3.25)

The value of ξ is in the interval [0, 1] with ξ = 0 for the completely random channel, and

ξ = 1 for the noiseless one.

We can show that the mutual information I is the monotonic increasing function of the

quantum non-locality parameterized by the noise parameter ξ. To do this, we calculate

the first and second derivative of I with respect to ξ and obtain

dI

dξ
=
d− 1

d
log

(d− 1)ξ + 1

1− ξ
,

d2I

dξ2
=
d− 1

d
(

d− 1

(d− 1)ξ + 1
+

1

1− ξ
).

From the above, we see that dI
dξ is always positive for ξ ∈ [0, 1]. Moreover, it is easy to

see that I is minimal at ξ = 0 since d2I
dξ2 = d− 1 > 0. Thus, the mutual information I is a

monotonically increasing function of ξ for the symmetric and isotropic quantum channel

with i.i.d. and uniform input marginal probabilities.
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3.4 Finding the bound of Bell-type inequality from the hierar-
chical semidefinite programming

We now will prepare for numerically evaluating the maximum of (3.5) which is monotonic

increasing with mutual information I under some assumptions. In order to ensure that

the maximum of (3.5) can be obtained by quantum resource, we have to use the same

method as in [44, 45]. In [44, 45], they checked if a given set of probabilities can be

reproduced from quantum mechanics or not. The test can be formulated as a hierarchy of

semidefinite programming (SDP). This is a very important issue in quantum information.

With the test, we can know the limitation for transmitting quantum information and the

non-local nature of the quantum correlation.

3.4.1 Projection operators with quantum behaviors

We will briefly review the basic ideas in [44, 45] and then explain how to use it for our

program. In [44, 45] they use the projection operators under following measurement

scenario. Two distant partite Alice and Bob share a NS-box. Alice and Bob input X and

Y to the NS-box, respectively, and obtain the corresponding outcomes a ∈ A and b ∈ B.

Here A and B are used to denote the set of all possible Alice’s and Bob’s measurement

outcomes, respectively. We use X(a) and Y (b) to denote corresponding inputs. These

outcomes can be associated with some sets of projection operators {Ea : a ∈ A} and

{Eb : b ∈ B}. The joint probability of the NS-box can then be determined by the

quantum state ρ of the NS-box and the projection operators as following:

Pr(a, b) = Tr(EaEbρ). (3.26)

Note that Pr(a, b) is the abbreviation of Pr(A~x, B~y|~x, ~y) = Tr(EA~x
EB~y

ρ) defined in the

previous sections.

If Ea and Eb are the genuine quantum operators, then they shall satisfy (i) hermiticity:

E†a = Ea and E†b = Eb; (ii) orthogonality: EaEa′ = δaa′ if X(a) = X(a′) and EbEb′ = δb,b′

if Y (b) = Y (b′); (iii) completeness: Σa∈XEa = I and Σb∈YEb = I; and (iv) commutativity:

[Ea, Eb] = 0.

In our measurement scenario, the distant partite Alice and Bob perform local mea-

surements so that property (iv) holds. On the other hand, the property (iii) implies

no-signaling as it leads to (3.2) via (3.26). Furthermore, this property also implies that
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there is redundancy in specifying Alice’s operators Ea’s with the same input since one of

them can be expressed by the others. Thus, we can eliminate one of the outcomes per

setting and denote the corresponding sets of the remaining outcomes for the input X by

ÃX (or B̃Y for Bob’s outcomes with input Y ). The collection of such measurement out-

comes
∑

X ÃX is denoted as Ã. Similarly, we denote the collection of Bob’s independent

outcomes as B̃.

Using the reduced set of projection operators {Ea : a ∈ Ã} and {Eb : b ∈ B̃}, we can

construct a set of operators O = {O1, O2, ..., Oi, ...}. Here Oi is some linear function of

products of operators in {I∪{Ea : a ∈ Ã}∪ {Eb : b ∈ B̃}}. The set O is characterized by

a matrix Γ given by

Γij = Tr(O†iOjρ). (3.27)

By construction, Γ is non-negative definite, i.e.,

Γ � 0. (3.28)

This can be easily proved as follows. For any vector v ∈ Cn (assuming Γ is a n by n

matrix), one can have

v†Γv = Σs,tv
∗
sTr(O†sOtρ)vt = Tr(V †V ρ) ≥ 0. (3.29)

Recall that our goal is to judge if a given set of joint probabilities such as (3.26) can

be reproduced by quantum mechanics or not. In this prescription, the joint probabilities

is then encoded in the matrix Γ satisfying the quantum constraints (3.26) and (3.28).

However, Γ contains more information than just joint probabilities (3.26). For examples,

the terms appearing in the elements of Γ such as Tr(EaEa′ρ),Tr(EbEb′ρ) for X(a) 6= X(a′)

and Y (b) 6= Y (b′) can not be expressed in terms of the joint probabilities of the NS-box.

This is because these measurements are performed on the same partite (either Alice or

Bob) and are not commutative. Therefore, to relate the joint probabilities of the NS-

box to the matrix Γ, we need to find the proper combinations of Γij so that the final

object can be expressed in terms of only the joint probabilities. Therefore, given the

joint probabilities, there shall exist some matrix functions Fq’s such that the matrix Γ is

constrained as follows:

Σs,t(Fq)s,tΓs,t = gq (3.30)

where gq’s are the linear functions of joint probabilities Pr(a, b)’s.
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We then call the matrix Γ a certificate if it satisfies (3.28) and (3.30) for a given set

of joint probabilities of NS-box. The existence of the certificate will then be examined

numerically by SDP. If the certificate does not exist, the joint probabilities cannot be

reproduced by quantum mechanics.

Examples on how to construct Fq and gq for some specific NS-box protocols can be

found in [44, 45]. For illustration, here we will explicitly demonstrate the case not con-

sidered in [44, 45], that is the k = 2, d = 3 RAC protocol. We will use the notation

which we defined in the previous sections. We start by defining the set of operators

E = {Ei} := I ∪ {EAx
: Ax ∈ {0, 1}, x ∈ {0, 1, 2}} ∪ {EBy

: By ∈ {0, 1}, y ∈ {0, 1}} with

the operator label i ∈ {0, 1, 2, ...,ma, ....,ma + mb}. The operator Ei=0 is the identity

operator I, and E1<i≤ma ∈ EAx
, Ema<i≤ma+mb ∈ EBy

.

The associated quantum constraints can be understood as the relations between joint

probability Pr(a, b) and Tr(E†aEbρ) (or marginal probability Pr(a) and Tr(IEaρ)). That is,

Tr(ρ) = 1, Tr(IEAx
ρ) = Pr(Ax|x), Tr(IEBy

ρ) = Pr(By|y),

Tr(EAx
EA′xρ) = δAx,A′x Pr(Ax|x),Tr(EBy

EB′yρ) = δBy,B′y Pr(By|y),

Tr(EAx
EBy

ρ) = Pr(Ax, By|x, y). (3.31)

Note that these equations also hold when permuting the operators as Tr(EAx
EBy

ρ) =

Tr(EBy
EAx

ρ).

Moreover, we can make the matrix Γ to be real and symmetric by redefining it as

Γ = (Γ∗ + Γ)/2. Thus, in the following we will only display the upper triangular part

of Γ. We then use the quantum constraints (3.31) to construct Fq and gq by comparing

them with (3.30). We then see that every constraint in (3.31) yields a matrix function Fq

which has only one non-zero element, and also yields a function gq which is either zero or

contains only a single term of a marginal or joint probability. These constraints can be

further divided into four subsets labeled by q = (q1, q2, q3, q4) as follows:

1. The labels q1, q2 ∈ {0, 1, ...,ma + mb} are used to specify the marginal probabil-

ities Tr(IEq1ρ) and Tr(E†q2Eq2ρ). The corresponding matrix functions Fq are given

by (Fq1)s,t = δs,1δt,q1+1 and (Fq2)s,t = δs,q2+1δt,q2+1, and the gq1 and gq2 are the

corresponding marginal probabilities.

2. The label q3 ∈ {1, ..., dk−1 +k} is used to specify the probabilities associated with the
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orthogonal operator pairs, Tr(E2q3−1E2q3ρ). The matrix element (Fq3)s,t = δs,2q3δt,2q3+1,

and gq3 = 0.

3. The label q4 ∈ {1, ...,mamb} = 4(2x + Ax) + (2y + By + 1) is used to specify

the joint probabilities of the NS-box. The corresponding Fq and gq are given by

(Fq4)s,t = δs,2x+Ax+2δt,ma+2y+By+2, and gq4 = Pr(Ax, By|x, y).

Considering the above set of quantum constraint, we can define the associated Γ matrix

Γ =



1 Pr(0|0)A Pr(1|0)A Pr(0|1)A Pr(1|1)A Pr(0|2)A Pr(1|2)A Pr(0|0)B Pr(1|0)B Pr(0|1)B Pr(1|1)B
Pr(0|0)A 0 χ0 χ1 χ2 χ3 Pr(00|00) Pr(01|00) Pr(00|01) Pr(01|01)

Pr(1|0)A χ4 χ5 χ6 χ7 Pr(10|00) Pr(11|00) Pr(10|01) Pr(11|01)
Pr(0|1)A 0 χ8 χ9 Pr(00|10) Pr(01|10) Pr(00|11) Pr(01|11)

Pr(1|1)A χ10 χ11 Pr(10|10) Pr(11|10) Pr(10|11) Pr(11|11)
Pr(0|2)A 0 Pr(00|20) Pr(01|20) Pr(00|21) Pr(01|21)

Pr(1|2)A Pr(10|20) Pr(11|20) Pr(10|21) Pr(11|21)
Pr(0|0)B 0 χ12 χ13

Pr(1|0)B χ14 χ15

Pr(0|1)B 0
0 Pr(1|1)B


(3.32)

, where Pr(Ax|x)A’s and Pr(By|y)B’s are the marginal probabilities for Alice and Bob,

respectively, and Pr(Ax, By|x, y)’s are the joint probability of the NS-box. The elements

χi’s in the above cannot be defined by the given marginal and joint probabilities because

they corresponds to the probability of different measurement settings for only one party.

Thus, they cannot appear in the constraints (3.30) but are still constrained by the non-

negative definiteness of Γ.

Testing the existence of the certificate— The task of testing the existence of the cer-

tificate can be formulated as a SDP by defining the standard primal and the associated

dual problems. The details can be found in Appendix C. The primal problem of SDP is

subjected to certain conditions associated with a positive semidefinite matrix, which can

be either linear equalities or inequalities. Each primal problem has an equivalent dual

problem. Therefore, when the optimal value of the primal problem is the same as the

optimal value of the dual problem, the feasible solution of the problem is obtained.

For our case the primal problem of SDP is as follows:

maximize λ (3.33a)

subject to Tr(F Tq Γ) = gq, q = 1, ...,m, (3.33b)

Γ− λI � 0. (3.33c)

Obviously, if the maximal value λ ≥ 0 is obtained, the non-negative definiteness of Γ is

guaranteed under the quantum constraints (3.28).
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On the other hand, the associated dual problem is given by

maximize
∑
q

yqgq, (3.34a)

subject to
∑
q

yqF
T
q � 0, (3.34b)

∑
q

yqTr(F Tq ) = 1. (3.34c)

Note that the quantity
∑

q yqgq is the object in characterized the quantum non-locality

since gq’s are mainly the two-point correlation function. Therefore, if maximizing this

quantity is equivalent to finding the generalized Tsireslon bound. Therefore, if the solution

of this SDP is feasible, then the associated certificate exists and there yields the generalized

Tsireslon bound.

3.4.2 Hierarchy of the semidefinite programming

Different operator sets O’s yield different quantum constrains (3.26) and (3.28). It seems

no guideline in choosing the set O and examining the existence of the corresponding

certificate. However, it is easy to see that the certificates associated with different operator

sets are equivalent. This can be seen as follows. Let us assume O and O′ are two linearly

equivalent set of operators such that Oi ∈ O can be expressed by a linear combination

of the elements in O′, i.e., Oi =
∑

j Ci,jO
′

j . If there exists a matrix Γ′ satisfying (3.28)

and(3.30) for the corresponding operator set O′, then there will exist another matrix Γ

whose elements are Γs,t =
∑

q,l C
∗
q,sΓ

′

q,lCl,t also satisfying (3.28) and (3.30) for the set O.

Therefore, we only need to stick to one set of operators in this linear equivalence class

when examining the existence of the corresponding certificate.

Besides, a systematic way of constructing O is proposed in [44, 45] so that the task

of finding the certificate can be formulated as a hierarchy of SDP. This is constructed as

follows. The length of the operator Oi, denoted by |Oi|, is defined as the minimal number

of projectors used to construct it. We can then divide the set O into different subsets

labeled by the maximal length of the operators in the corresponding subset. Thus, we

decompose the operator set O into a sequence of hierarchical operator sets denoted by Sn
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where n is the maximal length of the operators in Sn. That is,

S0 = {I}

S1 = {S0} ∪ {Ea : a ∈ Ã} ∪ {Eb : b ∈ B̃}

S2 = {S0} ∪ {S1} ∪ {EaEa′ : a, a′ ∈ Ã} ∪ {EbEb′ : b, b′ ∈ B̃} ∪

{EaEb : a ∈ Ã, b ∈ B̃}

... (3.35)

Furthermore, to save the computer memory space used in the numerical SDP algorithm,

in the above sequence we can add an intermediate set between Sn and Sn+1, which is given

by Sn+AB := {Sn} ∪ {S ∈ Sn+1|S = EaEbS
′ : a ∈ Ã, b ∈ B̃}. For example, when n = 1

we have S1+AB = {S1} ∪ {EaEb : a ∈ Ã, b ∈ B̃} such that S1 ⊆ S1+AB ⊆ S2. Note

that S1+AB does not have the product of the marginal projection operators in the form

of {EaEa′ : a, a′ ∈ Ã} and {EbEb′ : b, b′ ∈ B̃}. It is clear that S1+AB ⊆ S2. All the

operators in O can be expressed in terms of the linear combination of the operators in Sn

for large enough n.

 

 

   
      

   

  

Figure 3.3: The geometric interpretation of collection Qn

Since we know Sn ⊆ Sn+AB ⊆ Sn+1, the associated constraints produced by Sn+1 is

stronger than Sn+AB and Sn. We can start the task from S1 then S1+AB, S2 and so

on. Let the certificate matrix associated with the set Sn be denoted as Γ(n). Finding the

certificate associated with this sequence can be formulated as a hierarchical SDP. Once
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the given joint probabilities satisfy the quantum constraints (3.28) so that the associated

certificate Γ(n) exists, we then denote the collection of these joint probabilities as Qn.

Since we know that the associated constraints are stronger than the previous steps of the

hierarchical sequence, the collection Qn will become smaller for the higher n. That is,

the non-quantum correlations will definitely fail the test at some step in the hierarchical

SDP. The geometrical interpretation of the above fact is depicted in Fig 3.3.

It was shown in [44, 45] that the probability is ensured to be quantum only when the

certificate associated with Sn→∞ exists, i.e., for the joint probabilities in the collection

Q of Fig 3.3. In this sense, it seems that we have to check infinite steps. To cure this,

a stopping criterion is proposed in [44, 45] to terminate the check process at some step

of the hierarchical SDP. This can ensure that the given joint probability is quantum at

finite n if it is.

The stopping criterion is satisfied when the rank of sub matrix of Γ(n) is equal to the

rank of Γ(n), i.e.,

rank(Γ
(n)
X,Y ) = rank(Γ(n)). (3.36)

The element of Γ
(n)
X,Y is constructed by the operators in the set SX,Y := {Sn−1}

⋃
{S =

EaEbS
′ : a ∈ ÃX , b ∈ B̃Y , |S| ≤ n}.

The above stopping criterion is for integer n. However, it was also generalized in [45]

for the intermediate certificate Γ(n+AB): the stopping criterion is satisfied if the following

equation is satisfied for all the measurement settings X and Y ,

rank(Γ(n+XY )) = rank(Γ(n+AB)), (3.37)

so that the certificate Γ(n+AB) has a rank loop. Here Γ(n+XY ) is the certificate associated

with Sn+XY := {Sn} ∪ {S ∈ Sn+1|S = EaEbS
′ : a ∈ ÃX , b ∈ B̃Y }.

Now we are ready to implement the above criterion to numerically examine the quan-

tum behaviors of the given joint probabilities for our RAC protocols with higher k and

d.

3.4.3 The bound of Bell-type inequality and the corresponding mutual infor-
mation in the hierarchical semidefinite programming

Any Bell-type inequality including (3.5) can be written as the linear combination of joint

probabilities, then the hierarchical SDP can be used to approach the quantum bound
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of Bell-type inequality (the Tsirelson bound). Recall that the quantum non-locality and

the mutual information I are monotonically related for symmetric and isotropic channels

with i.i.d. and uniform input marginal probabilities. After obtaining the maximum of

Bell-type function at each step of the aforementioned hierarchical SDP, we can calculate

the corresponding mutual information I and compare with the information causality.

Since the quantum constraint is stronger in the hierarchical SDP and the collection of

Qn will become smaller while n is increasing. We then know that the bound of Bell-type

inequality and the associated mutual information I will become tighter for larger n and

it will converge to the quantum bound for large enough n. Once the bound of mutual

information I at some step of hierarchy does not saturate the information causality, we can

then infer that the quantum bound of mutual information will not saturate the information

causality, too.

First, let us discuss how to find the bound of Bell-type inequality. As discussed before,

the problem of finding the Tsirelson bound can be reformulated as a SDP. The primal

problem of this SDP is defined as

maximize Tr(CTΓ(n)) (3.38a)

subject to Tr(F Tq Γ(n)) = gq(p), q = 1, · · · ,m; (3.38b)

Γ(n) � 0. (3.38c)

Tr(HT
wΓ(1)) ≥ 0, w = 1, · · · , s; (3.38d)

The matrix C is given to make Tr(CTΓ(n)) the Bell-type function which we would like

to maximize. Eq. (3.38b) and (3.38c) are the quantum constraints discussed in the pre-

vious subsections so that the quantum behaviors are ensured during the SDP procedure.

Moreover, with proper choice of the matrix Hw
5, the condition (3.38d) is introduced to

ensure the non-negativity of the joint probabilities which are the off-diagonal elements of

Γ(1).

In the following we define the matrix C for our case. Eq. (3.5), which can be expressed

as the linear combination of the joint probabilities, i.e.,
∑

~x,~y Pr(B~y − A~x = ~x · ~y|~x, ~y), is

the object for our SDP (3.38). Since we only consider d − 1 marginal probabilities per

measurement setting, we should further rewrite our object according to the completeness

5Since we only consider a ∈ Ã and b ∈ B̃ to save the computer memory space, we need to choose Hw to ensure the
non-negative definiteness of not only the (d− 1)2 terms of Γ(1) but also the other d2 − (d− 1)2 terms which are the linear
combinations of the elements of Γ(1).
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conditions, i.e., Σa∈XEa = I and Σb∈YEb = I. After rewriting, we can write down the

matrix C in (3.38). We take d = 3, k = 2 RACs protocol for example. For Γ(1),

C =
1

2



1. 2. 0. 0. −1. 1. 1. 0. 3. 0. 0.

2. 0. 0. 0. 0. 0. 0. −1. −2. −1. −2.

0. 0. 0. 0. 0. 0. 0. 1. −1. 1. −1.

0. 0. 0. 0. 0. 0. 0. −1. −2. 2. 1.

−1. 0. 0. 0. 0. 0. 0. 1. −1. 1. 2.

1. 0. 0. 0. 0. 0. 0. −1. −2. −1. 1.

1. 0. 0. 0. 0. 0. 0. 1. −1. −2. −1.

0. −1. 1. −1. 1. −1. 1. 0. 0. 0. 0.

3. −2. −1. −2. −1. −2. −1. 0. 0. 0. 0.

0. −1. 1. 2. 1. −1. −2. 0. 0. 0. 0.

0. −2. −1. 1. 2. 1. −1. 0. 0. 0. 0.



. (3.39)

The size of (3.39) is equal to the size of Γ(1) (the first step in our hierarchical SDP). If

n 6= 1, the size of matrix C will be bigger, we could define (3.39) as the sub-matrix of

matrix C and the other elements of C are zero such that the object functions Tr(CTΓ(n))

are all equal for different steps of our hierarchical SDP.

For higher d and k, we write down the quantum constraints (3.28) for Γ(1) and Γ(1+AB)

and estimate its number in Appendix E. However, due to the limitation of the computer

memory (we have 128GB), we cannot finish all the tests of our hierarchical SDP but stop

at level of 1 + AB. In our calculation, we take the
∑

~x,~y Pr(B~y − A~x = ~x · ~y|~x, ~y) as the

object of SDP, which is monotonically related to the object of communication complexity∑
~y ξ~y in a straightforward way via (3.15).

At the n = 1 level the numerical results of our SDP object
∑

~x,~y Pr(B~y−A~x = ~x·~y|~x, ~y)

for various k and d are listed below:

k d=2 d=3 d=4 d=5

2 3.4142 4.8284 6.2426 7.6569

3 9.4641 19.3923 32.7846 49.6410

4 24.0000 72.0000 160.0000

5 57.8885 255.7477

The entries are in the table are the values of
∑

~x,~y Pr(B~y − A~x = ~x · ~y|~x, ~y).
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Similarly, at the n = 1+AB level the results for the same SDP object are listed below:

k d=2 d=3 d=4 d=5

2 3.4142 4.6667 5.9530 7.1789

3 9.4641 18.6633

4 24.0000

5 57.8885

The stopping criterion is checked at the same time. Unfortunately, it is not satisfied for

Γ(1+AB), this means that the bound associated with Γ1+AB is not the Tsirelson bound.

However, our numerical computational capacity cannot afford the higher level calculations.

Few more remarks are in order: (i) Even we do not require our channel to be isotropic,

i.e., uniform ξ~y for our SDP, we find that the channel for maximizing the SDP object to

be isotropic for our level n = 1 and n = 1+AB check. (ii) We find the bound at the n = 1

level is the same as the bound derived from signal decay theorem in section 3.2. (iii) For

d = 2 case, the bound for the SDP object at the n = 1 and n = 1 + AB level are equal,

which is also the same as the Tsirelson bound as can be proved by Tsirelson’s theorem

[56]. Since the bound is the Tsirelson bound, it will not change for the further steps of

the hierarchical SDP. (iv) For d > 2, the bound of the SDP object at the n = 1 + AB

level becomes tighter than the one at the n = 1 level, as expected. However, it needs

more numerical efforts to arrive the true tight bound for the quantum non-locality, i.e.,

the generalized Tsireslon bound.

Since the optimal channel for the above SDP procedure is isotropic, we can then obtain

the value of the noise parameter ξ and use (3.25) to evaluate the corresponding mutual

information I:

At the n = 1 level,

d=2 d=3 d=4 d=5

Information causality 1.0000 1.5850 2.0000 2.3220

k=2 0.7982 1.3547 1.7845 2.1357

k=3 0.7680 1.3360 1.7895 2.1680

k=4 0.7549 1.3333 1.8048

k=5 0.7476 1.3345

The entries are the corresponding mutual information I given by (3.25).
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At the n = 1 + AB level,

d=2 d=3 d=4 d=5

Information causality 1.0000 1.5850 2.0000 2.3220

k=2 0.7982 1.1972 1.5478 1.7788

k=3 0.7680 1.1531

k=4 0.7549

k=5 0.7476

Note that our results support the information causality. This is because the maximal

mutual information I evaluated from the joint probabilities constrained by the n = 1

certificates is already smaller than the bound from the information causality. Thus, as

implied by the geometric picture of Fig. 3.3, the the quantum bound on the mutual

information I obtained in the large n limit will also satisfy the information causality, at

least for the symmetric and isotropic channels with i.i.d. and uniform input marginal

probabilities. Moreover, for a given d the maximal mutual information I from the cer-

tificates decrease as k increases. However, it is hard to find the quantum bound of the

mutual information I exactly because the stopping criterion fails at the n = 1 + AB

level. It needs more checks for higher n certificate to arrive the quantum bound of the

mutual information I. However, we will not carry out this task due to the limitation of

the computational power.

3.5 Maximizing mutual information for general quantum com-
munication channels

Most of the RACs protocols discussed so far and in the literatures are under some assump-

tions such as i.i.d., uniform input marginal probabilities for the symmetric and isotropic

channels. If we want to test the information causality, we should maximize the mutual

information I for the more general quantum communication channels.

Recall that from the proof of section 3.3, we cannot formulate the problem of maximiz-

ing the mutual information I over the joint and the input marginal probabilities of the

NS-box as a convex optimization programming. Thus, for more general quantum commu-

nication channels, we are forced to solve the problem by brutal force. The procedure is as

follows. Firstly, we divide the defining domains of the joint and input marginal probabil-
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ities into many fine points. We then pick up the points satisfying the consistent relations

for a given communication channel(protocol). Secondly, we test if these joint probabili-

ties can be reproduced by quantum mechanics or not. If they can, we then evaluate the

corresponding mutual information I. Thirdly, by comparing these mutual information

I, we can obtain the maximal one and then check if the information causality is satis-

fied or not. By this brutal force method, we can then obtain the distribution of mutual

information I over the joint and the input marginal probabilities produced by quantum

mechanics. This yields far more than just the maximal mutual information consistent

with quantum mechanics. The price to pay is the cost for the longer computing time.

Due to the restriction of the computer power, we can only work for d = 2 and k = 2 case.

We start the discussion of more general communication channels by fixing either the

joint probabilities Pr(By−Ax|x, y) or the input marginal probabilities Pr(ai). Firstly, we

assume the input probabilities are i.i.d. and uniform such that we could take the CHSH

function as the object of quantum communication complexity. Therefore we could study

the relation between the mutual information and the quantum communication complexity.

Note that, when requiring our communication channel (3.18) to have the i.i.d. and uni-

form input marginal probabilities, the channel between ai and β then becomes symmetric

automatically. Secondly, in order to study the influence of the input marginal probabil-

ities Pr(ai) on the mutual information, we pick up three sets of the joint probabilities

Pr(By − Ax|x, y) constrained by quantum mechanics and then evaluate the correspond-

ing mutual information with different input marginal probabilities Pr(ai). Besides these

communication channels, in order to test if the information causality is always satisfied,

we will consider the most general quantum communication channel, namely, we do not

impose any condition on the communication channel except the quantum constraints for

joint probabilities.

Before evaluating the corresponding mutual information, the chosen joint probabilities

Pr(By − Ax|x, y) should pass a test. For d = 2 and k = 2 RAC protocol, the quantum

constraint is as follows:

G =


1 θ1 C00 C01

1 C10 C11

1 θ2

1

 � 0, (3.40)
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where Cx,y := (−1)xy[2 Pr(By − Ax = xy|x, y) − 1] is the correlation function of the

measurement setting x, y for Alice and Bob, respectively. The condition was pointed out in

[56, 42, 44, 45] and can be derived as the necessary and sufficient condition for the quantum

correlation functions Cx,y (or equivalently the joint probabilities Pr(By − Ax|x, y)) by

Tsirelson’s theorem [55], in which the marginal probabilities Pr(Ax|x) and Pr(By|y) are

unbiased. Actually, G is the sub matrix of the n = 1 certificate Γ(1). Due to the positivity,

(3.40) is satisfied once Γ(1) � 0.

Since the condition (3.40) is related to a positive semidefinite matrix, we need to

use the numerical recipe to solve it. Once the joint probabilities are not fixed in the

communication channel(protocol), we have to pick up many sets of joint probabilities

from their defining domains. This seems not efficient enough to test all possible sets of

joint probabilities by SDP. Therefore, instead of condition (3.40) we use a set of linear

inequalities to test if the joint probabilities can be produced by quantum mechanics or

not. In this way, the test will become simpler and more efficient. The linear inequalities

are [43, 54]

|arcsin(C00) + arcsin(C01) + arcsin(C10)− arcsin(C11)| ≤ π, (3.41a)

|arcsin(C00) + arcsin(C01)− arcsin(C10) + arcsin(C11)| ≤ π, (3.41b)

|arcsin(C00)− arcsin(C01) + arcsin(C10) + arcsin(C11)| ≤ π, (3.41c)

| − arcsin(C00) + arcsin(C01) + arcsin(C10) + arcsin(C11)| ≤ π. (3.41d)

Actually, the condition (3.41) is equivalent to (3.40). If the linear inequalities (3.41) are

satisfied, we then can find valid θ1 and θ2 to make condition (3.40) satisfied, and vise

versa [42, 44, 45].

Once the corresponding correlation functions Cx,y satisfy (3.41), we will know that

these joint probabilities Pr(By − Ax|x, y) can be reproduced by quantum system. But

we have to notice that some of them could also be expressed by the local hidden variable

model. This means the shared correlation is local. Since the bound of communication

complexity for local correlations is different from the quantum non-local ones, we could

use the communication complexity to divide them.
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Figure 3.4: Mutual information v.s. (quantum) communication complexity for d = 2, k = 2
RAC protocol with i.i.d. and uniform input marginal probabilities. Here, the
(quantum) communication complexity is characterized by the CHSH function. The
red part can be achieved also by sharing the local correlation.

3.5.1 Symmetric channels with i.i.d. and uniform input marginal probabili-
ties

We start with the most simple case: the d = 2, k = 2 RAC protocol with the symmetric

channels and i.i.d., uniform input marginal probabilities. In this case, the successful

probability for Bob to guess Alice’s database right is equivalent to the CHSH function

i.e., |C0,0 + C0,1 + C1,0 − C1,1|. Thus, we could take the CHSH function as the object of

communication complexity. Moreover, using the CHSH function and its three symmetric

partners by shifting the minus sign, we could ensure that the shared correlations can be

described by the local hidden variable model. Once the corresponding values of all these

functions are less than 2, the shared correlation is local. Otherwise, the shared correlation

could be quantum non-local or beyond. The latter happens when some of these values are

larger than 2
√

2 which is nothing but the Tsirelson bound. When the Tsirelson bound is

reached, the quantum non-locality between two partite (Alice and Bob) is the maximum.

In our numerical calculations, we divide the defining domain of the joint probabilities

Pr(By − Ax|x, y) into 100 points. Follow the procedure of our brutal force method, we

obtain the distribution of the mutual information I over the quantum communication

complexity as shown in Fig 3.4. for symmetric channels with i.i.d. and uniform input

79



Figure 3.5: Some points near the top region in Fig. 3.4.

marginal probabilities. Note that, the quantum communication complexity here (x-axis

of Fig 3.4) is characterized by the value of the CHSH function, |C0,0 +C0,1 +C1,0−C1,1|.

In Fig 3.4, all the points satisfy quantum constraint (3.41). We particularly use the red

color to denote the points which also can be obtained by the local correlations, i.e., the

bound of CHSH inequality and its three symmetric partners are all less than 2. Moreover,

it seems that the distribution of the mutual information over the quantum communication

complexity as shown in Fig 3.4 is not continuous. This is not the case but because we

did not partition the defining domain of the joint probability fine enough. In Fig 3.5 we

partition more finely on the defining domain of the joint probability in the top region of

Fig 3.4 and show that the empty region in Fig 3.4 is now filled. Similarly, the empty

region on the top of Fig 3.5 could be filled again by the more fine partitioning.

The results in Fig 3.4 is consistent with the information causality since the maximal

mutual information for the local or quantum correlations is bound by 1, the bound sug-

gested by information causality. However, the peculiar part of Fig 3.4 is that some of

the local correlations can achieve the larger mutual information than I ' 0.8, which is

achieved by the correlations with the maximal quantum communication complexity. This

peculiar part is the red region above I ' 0.8 in Fig 3.4. Especially, the maximal mutual

information I = 1 is reached when the shared correlation is marginally non-local, i.e.,

the communication complexity is equal to 2. This indicates that the mutual information
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is not monotonically related to the quantum communication complexity. Or put this in

the other way, the more quantum non-locality may not always yield the more mutual

information. We think it is interesting to understand this phenomenon in the future

works.

Figure 3.6: Mutual information vs (quantum) communication complexity for isotropic channels
with i.i.d. and uniform input marginal probabilities.

Form these symmetric quantum channels with i.i.d. and uniform input marginal prob-

abilities, we pick up the isotropic ones (ξ0 = ξ1) and obtain Fig 3.6. It shows that the

mutual information I and the quantum communication complexity are monotonically

related. This explicitly demonstrate what we have discussed in the previous section.

3.5.2 Channels with non-uniform input marginal probabilities

In the above communication channels, the input marginal probabilities are fixed to be

i.i.d. and uniform. Now we would like to demonstrate the effect of non-uniform input

marginal probabilities. In this case, we would like to vary the input marginal but keep

the joint probabilities fixed. To see this effect for different channels, we consider three

different sets of the joint probabilities corresponding to (i) symmetric, (ii) symmetric and

isotropic and (iii) asymmetric channel.

To be more specific, for the case (i) the joint probabilities should be constrained by

Pr(By − Ax = 0|x, y = 0) = 1 and Pr(By − Ax = xy|x, y = 1) = 1
2 for x = 0, 1 such

that the noise parameters are given by ξ0 = 1 and ξ1 = 0. For the case (ii) all the joint

probabilities Pr(By − Ax = xy|x, y) are equal to 1
2(1 + 1√

2
) such that ξ0 = ξ1 = 1√

2
. For
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Figure 3.7: I = I0 vs Pr(a0,1 = 0) for case (i).
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Figure 3.8: Density plot of the Left figure.

the case (iii) the joint probabilities are given by Pr(By − Ax = 0|x = 0, y) = 1
2(1 + 1√

2
)

and Pr(By − Ax = xy|x = 1, y) = 1
2 for y = 0, 1. Obviously, it is asymmetric for general

input marginal probabilities.

In the following discussion, we denote the mutual information I(a0; β|b = 0) as I0

and I(a1; β|b = 1) as I1, which are functions of two input marginal probabilities, namely,

Pr(a0 = 0) and Pr(a1 = 0). Here Ii can be thought as the mutual information for the

sub-channel between ai and β, and the corresponding noise parameter is ξi. The mutual

information I is just I = I0 + I1. Note that, I0 does not depend on Pr(By − Ax =

xy|x, y = 1) and I1 not on Pr(By − Ax = 0|x, y = 0). Thus, the sub-channel for I0 can

be made symmetric by just requiring Pr(By − Ax = xy|x, y = 0)’s for x = 0, 1 are equal,

and similarly for the sub-channel for I1 to be symmetric. An important feature for these

symmetric channels is that Ii will depend only on Pr(ai) not on Pr(a(i+1 mod 2)).

For case (i), both sub-channels are symmetric. Moreover, since ξ0 = 1 and ξ1 = 0 so

that the sub-channel for ξ0 is noiseless and the one for ξ1 is completely noisy. This then

leads to I1 = 0 and I = I0. The dependence of I = I0 on the input marginal probability,

i.e., Pr(a0 = 0) only, is shown in Fig 3.7-3.8. Note that I reaches its maximal value, 1 at

Pr(a0 = 0) = 1
2 as expected for the noiseless symmetric channel. This point is nothing

but the point of maximal I in Fig 3.4. Note that this maximum saturates the bound

by information causality. This implies that we can reach the causally allowed mutual

information bound by sacrificing one of the sub-channel without any comprise. This is a

bit surprising.

For case (ii), the channel is both symmetric and isotropic, we then expect that the
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Figure 3.9: I0 vs Pr(a0,1 = 0) for case (ii).
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Figure 3.10: I1 vs Pr(a0,1 = 0) for case (ii).
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Figure 3.11: I vs Pr(a0,1 = 0) for case (ii).
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Figure 3.12: Density plot of the Left figure.
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Figure 3.13: I0 vs Pr(a0,1 = 0) for case (iii).
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Figure 3.14: I1 vs Pr(a0,1 = 0) for case (iii).
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Figure 3.15: I vs Pr(a0,1 = 0) for case (iii).
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Figure 3.16: Density plot of the Left figure.

isotropy will also appear in the plot for I vs the input marginal probabilities, and that I0

and I1 will have the same shape. This is indeed the case as shown in Fig 3.9-3.12. Note

that Ii only depends on Pr(ai) though I = I0 + I1 depends on both. We see that the

maximal value of I occurs at the symmetric point, i.e., all the Pr(ai) equal to 1
2 . However,

the maximal value is 0.7983 which is less than 1 of the information causality but is the

same value for the case of maximal quantum communication complexity.

Finally, for case (iii), i.e., the particular asymmetric channel, Ii’s are now dependent

on both Pr(ai)’s unlike in the previous two cases. However, the mutual information I

has the isotropic form as in the case (ii) but with a far smaller maximal value at the

symmetric point. The results are shown in Fig 3.13-3.16.

Our above results implies that the the closer Pr(By −Ax = xy|x, y) to 1, the larger of

the mutual information I. This is consistent with our RAC protocol as Bob can perfectly

guess Alice’s inputs by using the PR box [21]. Of course, the information causality ensures

that the NS-box constrained by quantum mechanics can not be the PR box. Also, note

that the maximum of I occurs at the symmetric point of the input marginal probabilities
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for case (ii) and (iii) but it is not the case for case (i). Therefore, the uniform input

marginal probabilities do not always lead to the maximal I.

3.5.3 Information causality for the most general channels

After testing the information causality for the more general channels as discussed in

the previous sections, we would wonder if the information causality holds for the most

general channels or not, i.e., the channels without any additional constraint on the joint

probabilities and the input marginal probabilities except the necessary quantum and no-

signaling constraints. For our d = 2, k = 2 RAC protocol, we check this by partitioning

the defining domains of the probabilities into 100 points and then using the brutal force

methods to do the numerical check. We find that the information causality is always

satisfied. This yields a more general support for the information causality.

Furthermore, we find that the information causality is saturated, i.e., I = 1 when one

of the sub-channel is noiseless and the other one is completely noisy. This is similar to

the case (i) discussed in the previous subsection.

3.6 Summary

Information causality was proposed as a new physical principle and gives an intuitive

picture on the meaning of causality from the information point of view. Therefore, to test

its validity for different settings will help to establish it as a physical principle. Motivated

by this, in this work we try our best to extend the framework of the original proposal to

the more general communication protocols, such as the multi-level and multi-setting or

removing the conditions of symmetric channel or uniform input marginal probabilities. We

then test the information causality for these general protocols by either adopting the SDP

for numerical check, or using the brutal force method for the more general communication

channels. With all these efforts, our results are rewarding: we see that the information

causality are preserved in all the protocols discussed in this work. This reinforce the

validity of the information causality further than before. Though more checks for more

general protocols should be always welcome. We also find that the information causality

is saturated not by sharing the correlations with the maximal quantum non-locality, but

by the ones which are marginally non-local. This then raises the issues on the intimate

relation between the shared mutual information and the quantum non-locality. Especially,
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this result challenges our intuition that a channel can transfer more information with more

quantum non-local resources. We think our findings in this work will shed some light on

the related topics.
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Chapter 4

Conclusion

Information causality was proposed as the physical principle to single out quantum me-

chanics. In order to have more understanding about it, we study the constraints on the

information causality and test the information causality for the different communication

protocols.

In Chapter 2, we combine the information causality and the signal decay theorem and

then obtain a series of Tsirelson-type inequalities for two-level and bi-partite quantum

systems. Moreover, according to the theory of noisy computation, the constraint on

the information causality leads to a large computational noise and therefore the reliable

computation cannot be achieved.

In Chapter 3, in order to have more confidence of treating the information causality as

the physical principle, we test the information causality for more general quantum com-

munication protocols such as multi-level and multi-setting ones or the asymmetric com-

munication channels. Specifically, we calculate the maximal mutual information shared

between the sender and the receiver for more these general quantum communication pro-

tocols, and compare it to the bound from the information causality. For the quantum

communication protocols discussed in this work, the information causality is never vio-

lated. Thus, the information causality is supported and could be treated as a physical

principle to single out quantum mechanics.

Moreover, for the two-inputs/two-outputs case, we also find that the information

causality is saturated not for the channels with the maximal quantum non-locality as-

sociated with the Tsirelson bound but for the marginal cases saturating local bound of

the CHSH inequality. This means that, sharing more non-local correlation does not imply

the better performance in the communication. Thus, one may ask what is the essential

ingredient for the efficient quantum communication protocols.

So far, the multi-partite information causality is still unclear. In the above works,

we use the semidefinite programming to characterize the bi-partite quantum correlations.
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This work can be generalized to the multi-partite cases. Assuming the information causal-

ity can single out the quantum correlations, the maximal mutual information bound by the

information causality is then equal to the one over all quantum communication protocols.

One may then use the semidefinite programming to bound the multi-partite quantum

correlations and find the associated constraint for the multi-partite information causality.
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Appendix A

Signal decay and data processing
inequality for multi-nary channels

In this appendix, we will first sketch the key steps of [50] in obtaining the maximal bound

on the signal decay for the binary noisy channels, and then generalize this derivation to

the one for the multi-nary channels.

Our setup is to consider a cascade of two communication channels: X → Y → Z. The

decay of the signal is implied by the data processing inequality, i.e.,

I(X;Z) ≤ I(X;Y ). (A.1)

The mutual information I(X;Y ) = H(Y ) −
∑

i Pr(X = i)H(Y |X = i), where H(Y )

and H(Y |X) are the Shannon entropies for the probability Pr(Y ) and the conditional

probability Pr(Y |X), respectively.

Furthermore, for the binary symmetric channel A characterized by

A =

 1+ξ
2

1−ξ
2

1−ξ
2

1+ξ
2

 , (A.2)

it was shown in [50] that the bound on the signal decay is characterized by the following

bound
I(X;Z)

I(X;Y )
≤ ξ2. (A.3)

Note that this bound is tighter than the one obtained in [48], which is I(X;Z)
I(X;Y ) ≤ ξ.

In this appendix, we will generalize the above result to the one for the dinary channel

characterized by Pr(Z = i|Y = i) = ξ and Pr(Z = s 6= i|Y = i) = 1−ξ
d−1 with i ∈

{0, 1, ..., d− 1}, so that the signal decay is bound by

I(X;Z)

I(X;Y )
≤ (ξ − 1− ξ

d− 1
)2. (A.4)
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A.1 Sketch of the proof in [50]

The derivation in [50] consists of two key steps. The first one is to show the following

theorem for weak signal:

Theorem I: The ratio I(X;Z)
I(X;Y ) reaches its maximum if the conditional probabilities Pr(Y |X =

0) and Pr(Y |X = 1) are almost indistinguishable, i.e., |Pr(Y = 0|X = 0)−Pr(Y = 0|X =

1)| → 0.

To prove this theorem we need the following lemma:

Lemma I: For any strictly concave function f and g on the interval [0, 1], and any

p ∈ [0, 1], the ratio

r(x, y) = g2(x, y, p)/f2(x, y, p) (A.5)

reaches its maximum in the limit |x − y| → 0. Here f2(x, y, p) = f(px + (1 − p)y) −

pf(x)− (1− p)f(y) denotes the second order difference of the function f with the weight

p, and similarly for the g2(x, y, p).

We sketch the proof of this lemma, which will be useful when generalizing to the multi-

nary channel. We assume that the ratio r reaches its maximum at x = x∗ and y = y∗,

and for concreteness assuming x∗ < y∗. Note that 0 < r < ∞ due to the concave f

and g. We can perform affine transformation to scale this maximal value of r(x∗, y∗, p)

to be 1, and also to make f(x∗) = g(x∗) and f(y∗) = g(y∗). This immediately leads to

f(px∗ + (1 − p)y∗) = g(px∗ + (1 − p)y∗). That is, there is a point z∗ = px∗ + (1 − p)y∗

inside the interval [x∗, y∗] at which f also equals to g. Use this fact, it is easy to convince

oneself that either r(z∗, y∗) ≥ r(x∗, y∗) or r(x∗, z∗) ≥ r(x∗, y∗). For more subtle details,

please see [50]. By repeating this procedure we prove the lemma.

Observe that I(X;Y ) and I(X;Z) are the second order difference of the (concave)

entropy functions H(Y ) and H(Z), respectively with the weight p = Pr(X = 0). We can

then prove the Theorem I by the above lemma.

The second step is first to rewrite the ratio I(X;Z)
I(X;Y ) in terms of relative entropyD(p‖q) :=∑

x Pr(p = x)logPr(p=x)
Pr(q=x)

, that is,

I(X;Z)

I(X;Y )
=

∑1
i=0 Pr(X = i)D(Pr(Y |X = i) · A‖Pr(Y ) · A)∑1

i=0 Pr(X = i)D(Pr(Y |X = i)‖Pr(Y ))
. (A.6)
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Then, based on the above theorem we can parameterize the conditional probability

Pr(Y |X = 0) = ~p + ~ε where ~p =
∑1

i=0 Pr(X = i) Pr(Y |X = i) and ~ε = (ε,−ε) with

ε being sufficiently small. With this condition, (A.6) can be simplified to

I(X;Z)

I(X;Y )
≈ D((~p+ ~ε) · A ‖ ~p · A)

D(~p+ ~ε ‖ ~p)
. (A.7)

Note that the ratio now does not depend on Pr(X).

Finally, given the binary channel (A.2) we can expand the relative entropy in terms of

ε/Pr(Y ), so for the ratio I(X;Z)
I(X;Y ) . Then, fixing ε and then varying the first order term of

the ratio I(X;Z)
I(X;Y )

in the above expansion over ~p, we obtain the bound in (A.3).

A.2 Generalizing to the multi-nary channels

We now generalize the above derivation to the trinary noisy channels, then the general-

ization to the dinary channel will just follows. The key steps are similar to the binary

ones. The first step is to use the same method to prove the following theorem:

Theorem II: The ratio I(X;Z)
I(X;Y )

reaches its maximum only when all the three conditional

probabilities Pr(Y |X = i) with i = 0, 1, 2 are almost indistinguishable.

The strategy to prove this theorem is to observe that we can treat the pair (Pr(Y =

0|X = i),Pr(Y = 1|X = i)) for each i (note that Pr(Y = 2|X = i) is not independent of

this pair) as a point inside the unit square ([0, 1], [0, 1]). Then the three points Pr(Y |X =

i) for i = 0, 1, 2 form a triangle. We can then follow the same way of proving the

Lemma I in the previous subsection for the trinary case. First, we assume the maximal

value of r occurs at all three vertices of some triangle. We then perform the affine

transformation to rescale this maximal value to 1, and to make f = g (or more specifically

H(Y |X = i) = H(Z|X = i)) at the three vertices of the above triangle. This then

immediately leads to that there exists some point inside the triangle such that f = g.

We can use this point to construct a smaller triangle with any two of the vertices of the

original triangle and show that the ratio r for this new triangle is greater than the one for

the original larger triangle. Repeating this procedure we can prove the above theorem. It

is also clear that we can generalize the theorem for the multi-nary channels by generalizing

the triangle to the concave body of the higher dimensional space.

Here, we should point out that one can always reduce the concave body to the linear

interval one, so that we can reduce to the situation for the binary case. That is, we
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set all the conditional probabilities except one to be equal, and then study the closeness

condition of the remaining two distinct conditional probabilities for the maximal ratio of
I(X;Z)
I(X;Y )

. In the following, we will always restrict to such a situation.

We then go to the second step as for the binary channel, that is to use Theorem II to

reduce the problem of maximizing I(X;Z)
I(X;Y ) to the one of maximizing the ratio of relative

entropies. We rewrite the ratio of two mutual information as following,

I(X;Z)
I(X;Y ) =

∑2
i=0 Pr(X=i)D(Pr(Y |X=i)·A‖Pr(Y )·A)∑2

i=0 Pr(X=i)D(Pr(Y |X=i)‖Pr(Y ))
. (A.8)

To simplify the expression for further manipulations, we denote the average probability

of Y as ~p =
∑2

i=0 Pr(X = i) Pr(Y |X = i), and parameterize the probability Pr(Y |X =

0) = ~p+~ε0 and Pr(Y |X = 1) = ~p+~ε1. Thus, the probability Pr(Y |X = 2) is forced to be

~p − Pr(X=0)
Pr(X=2)~ε0 −

Pr(X=1)
Pr(X=2)~ε1. The parameter vectors ~ε0 and ~ε1 should be sufficiently small

as required by Theorem II to have maximal ratio I(X;Z)
I(X;Y ) . Furthermore, we will further

reduce the triangle to the linear interval case by assuming ~ε0 = ~ε1, i.e., Pr(Y |X = 0) =

Pr(Y |X = 1).

The ratio (A.8) then becomes

I(X;Z)

I(X;Y )
≈ D((~p+ ~ε0) · A ‖ ~p · A)

D(~p+ ~ε0 ‖ ~p)
. (A.9)

Note again the ratio now does not depend on Pr(X).

Before serious expansion of (A.9) in the power of ~ε0, we need to specify ~p = (Pr(Y=0),Pr(Y=1),Pr(Y=2))

and ~ε0 = (v0,v1,v2). Note that, v0 + v1 + v2 = 0. As for the bi-nary channel, we expand the

relative entropy in terms of vi
Pr(Y=i) . The leading term of the expansion for the denomi-

nator of (A.9) is found to be

D(~p+ ε0 ‖ ~p) =
1

2ln2

1∑
i=0

v2
i

Pr(Y = i)
. (A.10)

To find the expansion of the numerator, we need to specify the channel A between Y

and Z. The generic trinary channel is given by

A = Pr(Z|Y ) =


a1 a2 a3

b1 b2 b3

c1 c2 c3

 , (A.11)

where the elements of the channel should satisfy a1 + a2 + a3 = 1, b1 + b2 + b3 = 1, and

c1 + c2 + c3 = 1. Then, the leading term in the expansion of the numerator of (A.9) is
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found to be

D((~p+ ~ε0) · A ‖ ~p · A) = 1
2ln2(v0a1+v1b1+v2c1

p(Z=0)
+ v0a2+v1b2+v2c2

p(Z=1)
+ v0a3+v1b3+v2c3

p(Z=2)
). (A.12)

For simplicity, we only consider the symmetry trinary channel as follows

A = Pr(Z|Y ) =


ξ 1−ξ

2
1−ξ

2

1−ξ
2 ξ 1−ξ

2

1−ξ
2

1−ξ
2 ξ

 . (A.13)

Then, (A.12) then becomes

D((~p+ ~ε0) · A ‖ ~p · A) = (
3ξ − 1

2
)2 1

2ln2

2∑
i=0

v2
i

Pr(Z = i)
. (A.14)

Since we know that for symmetric channel, the maximal mutual information is achieved

for uniform input probabilities. Thus, we assume uniform Pr(Y ) and Pr(Z) so that (A.9)

depends only on variable ξ. We then obtain

I(X;Z)

I(X;Y )
≤ (

3ξ − 1

2
)2. (A.15)

This is the generalization of (A.3) for binary channel to the trinary one.

Similarly, we can generalize the above derivation to the dinary channels. If the channel

between Y and Z is a dinary and symmetry channel specified as follows: Pr(Z = i|Y =

i) = ξ and Pr(Z = s 6= i|Y = i) = 1−ξ
d−1 with i ∈ {0, 1, ..., d − 1}, then the bound of the

ratio I(X;Z)
I(X;Y )

is given by (A.4).
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Appendix B

The concavity of mutual information

In this appendix, we want to prove the mutual information I is not a concave function

to joint probabilities Pr(B~y − A~x|~x, ~y) and input marginal probabilities Pr(ai). Thus,

we could not formulate the problem (maximizing mutual information I) as a convex

optimization programming.

First, we reexpress mutual information I by Pr(B~y−A~x|~x, ~y) and Pr(ai). If maximizing

mutual information is a concave function to these probabilities, the second order partial

derivative of mutual information respecting to each probability should be negative. Here,

we find a violation when calculating ∂2I
∂(Pr(B~y−A~x=0|~x=0,~y=0))2 . In following paragraphs, we

denote the joint probability Pr(B~y − A~x = 0|~x = 0, ~y = 0) as V .

The mutual information can be rewritten as

I =

k−1∑
i=0

Ib=i, (B.1)

where Ib=i is equal to I(ai; β|b = i). Since the joint probability V only contribute to Ib=0,

we only need to calculate ∂2Ib=0

∂V 2 . The reexpression of Ib=0 is

Ib=0 =

d−1∑
n=0

d−1∑
j=0

Pr(β = n, a0 = j|b = 0)log2
Pr(β = n, a0 = j|b = 0)

Pr(β = n|b = 0) Pr(a0 = j|b = 0)
. (B.2)

Therefore, the first order partial derivative respecting to Pr(B~y −A~x = 0|~x = 0, ~y = 0) is

∂Ib=0

∂V
=

d−1∑
n=0

d−1∑
j=0

∂ Pr(a0 = j, β = n|b = 0)

∂V
log2

Pr(a0 = j, β = n|b = 0)

Pr(β = n|b = 0) Pr(a0 = j|b = 0)

+
1

ln2
(
∂ Pr(a0 = j, β = n|b = 0)

∂V
− Pr(a0 = j, β = n|b = 0)

Pr(β = n|b = 0)

∂ Pr(β = n|b = 0)

∂V
)(B.3)

We can express Pr(a0 = j, β = n|b = 0) as the combination of joint probabilities

Pr(B~y − A~x|~x, ~y) and input marginal probabilities Pr(ai) to obtain ∂ Pr(a0=j,β=n|b=0)
∂V .

Since joint probabilities Pr(B~y − A~x|~x, ~y) are subjected to the normalization conditions
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of total probability, if n− j 6= (d− 1),

Pr(a0=j,β=n|b=0)=
∑

ak 6=0
Pr(B~y−A~x=n−j|~x,~y=0) Pr(a0=j) Πk 6=0 Pr(ak); (B.4)

if n− j = (d− 1),

Pr(a0=j,β=n|b=0)=
∑

ak 6=0
(1−

∑d−2
t=0 Pr(B~y−A~x=t|~x,~y=0)) Pr(a0=j) Πk 6=0 Pr(ak), (B.5)

where ~x in the above functions is given by the encoding of the RAC protocol, namely,

~x := (x1, · · · , xk−1) with xi = ai − a0

Now, we can calculate the derivatives. The patrial derivative

∂ Pr(a0 = j, β = n|b = 0)

∂V
(B.6)

is not equal to zero for two cases, the first one is j = n, we can obtain Πk Pr(ak = n)

for (B.6). The second case is n− j = (d− 1), we can obtain −Πk Pr(ak = n− (d− 1)).

Therefore, since Pr(β = n|b = 0) =
∑

j Pr(a0 = j, β = n|b = 0), we can obtain

∂ Pr(β = n|b = 0)

∂V
= Πk Pr(ak = n)− Πk Pr(ak = n− (d− 1)). (B.7)

Put above result to (B.3), for fixed j, we can find that
∑d−1

n=0
∂ Pr(a0=j,β=n|b=0)

∂V = 0, thus

the second term of (B.3) will vanish.

We then can calculate the second order derivative

∂2Ib=0

∂V 2 = 1
ln2

∑d−1
n=0

∑d−1
j=0(∂ Pr(a0=j,β=n|b=0)

∂V )2 1
Pr(a0=j,β=n|b=0)

− 2
Pr(β=n|b=0)

∂ Pr(a0=j,β=n|b=0)
∂V

∂ Pr(β=n|b=0)
∂V + (∂ Pr(β=n|b=0)

∂V )2 Pr(a0=j,β=n|b=0)
(Pr(β=n|b=0))2 (B.8)

For d = 2 and k = 2, (B.8) becomes

∂2I

∂V 2
=

1

ln2
[(Pr(a0 = 0) Pr(a1 = 0))2(

1

Pr(a0 = 0, β = 0|b = 0)
+

1

Pr(a0 = 0, β = 1|b = 0)
)

+(Pr(a0 = 1) Pr(a1 = 1))2(
1

Pr(a0 = 1, β = 0|b = 0)
+

1

Pr(a0 = 1, β = 1|b = 0)
)

−(
1

Pr(β = 0|b = 0)
+

1

Pr(β = 1|b = 0)
)(Pr(a0 = 0) Pr(a1 = 0)− Pr(a0 = 1) Pr(a1 = 1))2]

(B.9)

Once Pr(a0 = 0) = 1− Pr(a1 = 0), the above function is non-negative.

For higher d and k, once the input marginal probabilities Pr(ai) are uniform. We then
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can obtain

∂2I

∂V 2
=
∂2Ib=0

∂V 2
=

1

ln2

d−1∑
n=0

1

d2k
(

1

Pr(a0 = n, β = n|b = 0)
+

1

Pr(a0 = n, β = n− (d− 1)|b = 0)
)

> 0 (B.10)

It is clear that mutual information I is not a concave function to joint probabilities

Pr(B~y − A~x|~x, ~y) and input marginal probabilities Pr(ai).
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Appendix C

Semidefinite programming

In this appendix, we briefly introduce the semidefinite programming (SDP) [61]. SDP

is the problem of optimizing a linear function subjected to certain conditions associated

with a positive semidefinite matrix X, i.e., v†Xv ≥ 0, for v ∈ Cn, and is denoted by

X � 0. It can be formulated as the standard primal problem as follows. Given the n× n

symmetric matrices C and Dq’s with q = 1, · · · ,m, we like to optimize the n×n positive

semidefinite matrix X � 0 such that we can achieve the following:

minimize Trace(CTX) (C.1a)

subject to Trace(DT
q X) = bq, q = 1, · · · ,m . (C.1b)

Corresponding to the above primal problem, we can obtain a dual problem via a Lagrange

approach [64]. The Lagrange duality can be understood as the following. If the primal

problem is

minimize f0(x) (C.2a)

s.t. fq(x) ≤ 0, q ∈ 1...m. (C.2b)

hq(x) = 0, q ∈ 1...p, (C.2c)

the Lagrange function can be defined as

L(x, λ, ν) = f0(x) + Σm
q=1λqfq(x) + Σp

q=1νqhq(x), (C.3)

where λ1,. . . , λm, and ν1,. . . ,νp are Lagrange multipliers respectively. Due to the problem

and (C.3), the minima of f0 is bounded by (C.3) under the constraints when λ1,. . . ,

λm ≥ 0.

inf
x
f0 ≥ inf

x
L(x, λ, ν).

Then the Lagrange dual function is obtained.

g(λ, ν) = inf
x
L(x, λ, ν).
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g(λ, ν) ≤ p (p is the optimal solution of f0(x) ), for λ1,. . . , λm ≥ 0 and arbitrary ν1,. . . ,νp.

The dual problem is defined.

maximize g(λ, ν) (C.4a)

s.t. λq ≥ 0. (q ∈ {1...m}) (C.4b)

We can use the same method to define the dual problem for SDP. From the primal problem

of SDP (C.1), we can write down the dual function by using minimax inequality [65].

inf
X�0

Trace(CTX) = infX�0 Trace(C
TX) +

∑m
q=1 yq(bq − Trace(DT

q X))

= infX�0 supy
∑m

q=1 yq(bq) + Trace((CT −
∑m

q=1 yqD
T
q )X)

≥ supy infX�0

∑m
q=1 yq(bq) + Trace((CT −

∑m
q=1 yqD

T
q )X)

= supy infX�0

∑m
q=1 yq(bq) + Trace((C −

∑m
q=1 yqDq)

TX). (C.5)

The optimal solution of dual function is bounded under some vector y.

sup
y

inf
X�0

m∑
q=1

yq(bq) + Tr((C −
m∑
q=1

yqDq)
TX) =

 supy
∑m

q=1 yq(bq) ;when C −
∑m

q=1 yqDq � 0

−∞ ; otherwise.

The correspond dual problem is

maximize

m∑
q=1

yq(bq) (C.6a)

s.t. S = C −
m∑
q=1

yqDq � 0. (C.6b)

If the feasible solutions for the primal problem and the dual problem attain their

minimal and maximal values denoted as p′ and d′ respectively, then p′ ≥ d′, which is called

the duality gap. This implies that the optimal solution of primal problem is bounded by

dual problem. This then leads to the following: Both the primal and the dual problems

attain their optimal solutions when the duality gap vanishes, i.e., d′ = p′.
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Appendix D

The Tsirelson-type inequality
derived from the information

causality

In this appendix, we write down the detail of getting the Tsirelson-type inequality derived

from IC. We review the the RAC protocol as follows. Alice has a database of k bits

a0, a1, , , ak−1 where ai ∈ {0, 1} is the random variable ∀i ∈ (0, · · · , k − 1). The distant

Bob is given a random variable b ∈ (0, ...k − 1) and a bit α sent by Alice. Bob’s task is

to guess ab. Here we will consider the RAC protocol with different settings. Case (a) is

proposed in the main text. In case (b), Alice’s and Bob’s settings are modified. In the

following, Alice’s input is denoted by an N -bit string ~x = x1 . . . xN . Let x = 1+

N∑
i=1

2i−1xi,

1 ≤ x ≤ 2N . Bob’s input is denoted by N - bit string ~y = y1 . . . yN .

Case (a)

Here N = k− 1, and xi = a0 + ai ∀i ∈ {1, ..., k− 1}. yi = δi,b ∀i ∈ {1, ..., k− 1}, if b 6= 0.

~y = ~0 if b = 0. Let y = 1 +

N∑
i=1

iyi, 1 ≤ y ≤ k. In this case, the Tsirelson-type inequality

derived from information causality following the procedure in the chapter 2. is

|
∑
{~x},{~y}

(−1)~x·~yC~x,~y| ≤ 2k−1
√
k. (D.1)

Case (b)

Here N = k, xi = ai−1, and yi = δi,b+1 ∀i ∈ {1, ..., k}. Let y =

N∑
i=1

iyi, 1 ≤ y ≤ k. Then,

the Tsirelson-type inequality from information causality is

|
∑
{~x},{~y}

(−1)~x·~yC~x,~y| ≤ 2k
√
k. (D.2)
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D.1 Checking the Tsirelson-type bound by semidefinite pro-
gramming

We now use SDP to check the Tsirelson-type bound. To cast the above problem of finding

the Tsirelson’s bound in the context of quantum mechanics, we need to use Tsirelson’s

theorem [55]. It says that for any quantum state |Ψ〉 ∈ A
⊗

B shared by two observers

Alice and Bob with their measurement outcomes being Ax ∈ [−1, 1] and By ∈ [−1, 1],

respectively. The correlation function can be expressed by the inner product of two real

unit vectors αx, βy ∈ Rt+v. Therein, t and v are the numbers of Alice’s and Bob’s

measurement settings, respectively. In detail, C~x,~y used in (D.1) or (D.2), the Tsirelson’s

theorem guarantees that we have C~x,~y = αx ·βy. Then, we can cast the problem of finding

the Tsirelson bound in (D.1) or (D.2) into the following form of optimal problem for SDP,

maximize |
∑
{~x},{~y}

(−1)~x·~yαx · βy | (D.3a)

s.t. ‖αx ‖= ‖βy ‖= 1 , ∀ x, y. (D.3b)

Then, the associated dual problem is

minimize

m∑
q=1

yq (D.4a)

s.t. S =

m∑
q=1

yqDq − C � 0. (D.4b)

We now will turn the problem (D.3) into the primal problem (C.1) by constructing the

matrices X, C and Ai’s from the unit vectors αx and βy. Following the way in [56], the

mapping is as follows. Define the matrix P whose columns are vectors (α1, ..., αt, β1, ...βv).

Then the SDSP matrix X is given by P TP , which can be put into the following block

form

X =

 E F

G H


where the matrix elements of each block are Eij = αi · αj , Fib = αi · βb , Gaj = βa · αj
and Hab = βa · βb with i, j = 1, · · · , t (t = 2N ) and a, b = 1, · · · , v (v = k). Note that
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F and G are used in (D.3), and instead E and H are used in (D.3b). Therefore, we can

write down the matrices C and Dq’s accordingly so that the problem (D.3) is equivalent

to the problem (C.1). It is easy to see that C is a matrix with only non-vanishing off-

diagonal block of matrix elements given by (−1)~x·~y, and Dq’s are the diagonal matrices

with (Dq)st = δs,qδt,q. We omit their detailed forms here.

We take k = 2 and k = 3 in case(a) for example.

k=2

Here ~x = x1 and ~y = y1. According Eq. (D.1), we want to maximize |C0,0 + C0,1 +

C1,0 − C1,1|. Using the Tsirelson theorem, it is equivlaent to maximizing α1 · β1 + α1 ·

β2 + α2 · β1 − α2 · β2. Such Tsirelson bound has been showed by Wehner [56] using SDP.

We just show the numerical result. For more details, please see [56]. After using SeDuMi

program [62] to solve SDP, the optimal for both primal and dual problem is 2.8284. It is

consistent with the Tsirelson bound [53] (2
√

2) for the case two settings per site.

k=3 Here ~x = x1x2 and ~y = y1y2. Notably, ~y ∈ {00, 10, 01}. The problem which we

want to solve is

maximize |C00,00 + C00,10 + C00,01 + C01,00 + C01,10 − C01,01

+C10,00 − C10,10 + C10,01 + C11,00 − C11,10 − C11,01|

= maximize α1 · β1 + α1 · β2 + α1 · β3 + α3 · β1 + α3 · β2 − α3 · β3

+α2 · β1 − α2 · β2 + α2 · β3 + α4 · β1 − α4 · β2 − α4 · β3. (D.5)

The X matrix for primal problem is X = STS where the columns of S correspond the

unit vectors (α1, α2, α3, α4, β1, β2, β3).

X =



α1 · α1 α1 · α2 α1 · α3 α1 · α4 α1 · β1 α1 · β2 α1 · β3

α2 · α1 α2 · α2 α2 · α3 α2 · α4 α2 · β1 α2 · β2 α2 · β3

α3 · α1 α3 · α2 α3 · α3 α3 · α4 α3 · β1 α3 · β2 α3 · β3

α4 · α1 α4 · α2 α4 · α3 α4 · α4 α4 · β1 α4 · β2 α4 · β3

β1 · α1 β1 · α2 β1 · α3 β1 · α4 β1 · β1 β1 · β2 β1 · β3

β2 · α1 β2 · α2 β2 · α3 β2 · α4 β2 · β1 β2 · β2 β2 · β3

β3 · α1 β3 · α2 β3 · α3 β3 · α4 β3 · β1 β3 · β2 β3 · β3


(D.6)
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According to (D.5), the matrix C is defined

C =
−1

2
×



0 0 0 0 1 1 1

0 0 0 0 1 −1 1

0 0 0 0 1 1 −1

0 0 0 0 1 −1 −1

1 1 1 1 0 0 0

1 −1 1 −1 0 0 0

1 1 −1 −1 0 0 0


.

The norm of the vectors (α1, α2, α3, α4, β1, β2, β3) must be one is the source of the con-

strain. Each of the matrix Dq (q = 1...7) is a 7×7 diagonal matrix with the q-th diagonal

element being one and zero others. The value bq (q = 1...7) is one. The numerical result

shows that the tight bound is 6.9282, which essentially agrees with (D.1). When we get

the optimal solution, the correlation function matrix is

X =



1.0000 0.3333 0.3333 −0.3333 0.5774 0.5774 0.5774

0.3333 1.0000 −0.3333 0.3333 0.5774 −0.5774 0.5774

0.3333 −0.3333 1.0000 0.3333 0.5774 0.5774 −0.5774

−0.3333 0.3333 0.3333 1.0000 0.5774 −0.5774 −0.5774

0.5774 0.5774 0.5774 0.5774 1.0000 0.0000 0.0000

0.5774 −0.5774 0.5774 −0.5774 0.0000 1.0000 −0.0000

0.5774 0.5774 −0.5774 −0.5774 0.0000 −0.0000 1.0000


. (D.7)

X satisfying the constraint that X is SDSP with non-negative eigenvalues [66].

For the case k = 3 to k = 8

After setting up the SDP for finding the Tsirelson bound, we still use the package

named SeDuMi to solve it for both case (a) and (b) with any value of k. The result agrees

extremely well with the bound obtained from information causality up to O(10−4). To be

more concrete, the numerical results are shown below: for case (a) up to k = 8, we have

k 3 4 5 6 7 8

SDP 6.9282 16.0000 35.7771 78.3837 169.3281 362.0387

This agrees extremely well with the RHS of (D.1). Similarly, for case (b) up to k = 8, we

have
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k 3 4 5 6 7 8

SDP 13.8564 32.0000 71.5542 156.7673 338.6562 724.0773

It again agrees extremely well with (D.2). Therefore, based on our numerical simu-

lation, information causality indeed singles out the Tsirelson bound of a physical theory

such as quantum mechanics.
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Appendix E

The quantum constraints for n = 1
and n = 1 + AB certificate

We divide this appendix into two parts. In the first part, we will write down the associated

quantum constraints for Γ(1) and Γ(1+AB) when finding the bound of Bell-type inequality.

In the second part, we will estimate the number of these constraints and find a efficient

way to write down these constraints.

E.1 The quantum constraints for n = 1 and n = 1+AB certificate

When maximizing the Bell-type inequality under some quantum constraints, the joint

probabilities are not given, they are variables. Therefore, when writing down quantum

constraints (3.38b), we only need to consider the elements with the specific value (0 and

1) and the relation between different elements such as some elements are the same. For

convenience, instead of A~x and B~y, we use a : a ∈ Ã and b : b ∈ B̃ to denote Alice’s and

Bob’s outcomes and X(a) and Y (b) are the associated measurement setting. The indexes

s, t of Γ denote associated operators, i.e., Γa,b = Tr(EaEbρ).

For Γ(1), the associated quantum constraints are

• Γ
(1)
1,1 = Tr(ρ) = 1.

• Γ
(1)
a,a′ = δaa′Γ

(1)
1,a if X(a) = X(a′).

• Γ
(1)
b,b′ = δbb′Γ

(1)
1,b if Y (a) = Y (a′).

• Γ
(1)
s,t = Γ

(1)
t,s .

We reexpress Γ(1+AB) by 4 sub-matrixes, v1,1 v1,2

v2,1 v2,2

 (E.1)

Since Γ(1+AB) is symmetric matrix, the sub-matrix v2,1 is equal to the transpose of v1,2,
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and both sub-matrix v1,1 and v2,2 are symmetric matrixes. Note that, v1,1 = Γ(1). The

elements of matrices v1,2 and v2,2 are constrained by following quantum constrains:

• Γ
(1+AB)
1,ab = Γ

(1+AB)
a,ab = Γ

(1+AB)
a,b = Γ

(1+AB)
b,ab .

• Γ
(1+AB)
ab,a′b = Γ

(1+AB)
a,a′b = Γ

(1+AB)
a′,ab .

• Γ
(1+AB)
ab,ab′ = Γ

(1+AB)
b,ab′ = Γ

(1+AB)
b′,ab .

• Γ
(1+AB)
a,a′ = 0, Γ

(1+AB)
a,a′b = 0, and Γ

(1+AB)
ab,a′b′ = 0 if X(a′) = X(a).

• Γ
(1+AB)
b,b′ = 0, Γ

(1+AB)
b,ab′ = 0, and Γ

(1+AB)
ab,a′b′ = 0 if Y (b) = Y (b′).

• Γ
(1+AB)
s,t = Γ

(1+AB)
t,s .

E.2 Estimating the number of constrains for n = 1 and n = 1+AB
certificates

Due to the limitation of computer memory, we need to estimate the number of these

quantum constraints for different k and d RAC protocols. The dimension of Γ(1) is

1 + (d − 1)(dk−1 + k), we denote it as dim. The number of conditions corresponding to

different quantum behaviors is as follows.

n=1 symmetric matrix Tr(ρ) = Γ
(1)
1,1 = 1 orthogonality EaEa = Ea, EbEb = Eb

number dim(dim−1)
2 1 (d−1)(d−2)

2 (dk−1 + k) dim− 1

The dimension of Γ(1+AB) is 1 + (d − 1)(dk−1 + k) + (d − 1)(dk−1k), we denote it as

dim1+AB. The number of conditions corresponding to different quantum behaviors is as

follows:

n=1+AB symmetric matrix Tr(ρ) = Γ1
1,1 = 1 orthogonality EaEa = Ea, EbEb = Eb same

number
dim1+AB(dim1+AB−1)

2
1 otha+ othb+ othc dim1+AB − 1

∑7
i=1 samei

The quantum constraints orthogonality and commutativity make some elements of

certificate to be 0 or to be the same. We will specify to estimate the number of these

special elements in n = 1 + AB certificate. First, we estimate the number of elements

whose value is zero.

• The variable otha = (d−1)(d−2)
2 (dk−1 + k) is used to specify the number of zero

elements for right upper matrix of v1,1.
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• The variable othb = 2(d − 1)2(d − 2)kdk−1 is used to specify the number of zero

elements for sub-matrix v1,2.

• The variable othc = kdk−1(d−1)2

2 ((d− 2)(d− 1)(dk−1 + k − 2) + (d− 1)2 − 1) is used

to specify the number of zero elements for right upper matrix of v2,2.

We estimate the variable samei which is used to denote the number of equal pairs.

• Γ
(1+AB)
1,ab = Γ

(1+AB)
a,ab , same1 = (d− 1)2(dk−1k).

• Γ
(1+AB)
a,ab = Γ

(1+AB)
a,b , same2 = (d− 1)2(dk−1k).

• Γ
(1+AB)
b,ab = Γ

(1+AB)
a,b , same3 = (d− 1)2(dk−1k).

• Γ
(1+AB)
ab,a′b = Γ

(1+AB)
a,a′b , same4 = (d− 1)3dk−1k(dk−1 − 1)/2.

• Γ
(1+AB)
a,a′b = Γ

(1+AB)
a′,ab , same5 = (d− 1)3dk−1k(dk−1 − 1).

• Γ
(1+AB)
ab,ab′ = Γ

(1+AB)
b,ab′ , same6 = (d− 1)3dk−1k(k − 1)/2.

• Γ
(1+AB)
b,ab′ = Γ

(1+AB)
b′,ab , same7 = (d− 1)3dk−1k(k − 1).

After estimating the number of conditions, we can think how to write down these

conditions with minimal computer memory. Here, we use the numerical package named

CVXOPT [63] to calculate the bound of Bell-type inequality. The primal problem of the

cone programming defined in CVXOPT is

minimize c · x (E.2a)

subject to Ax− b = 0 (E.2b)

h−Gx ≥ 0 (E.2c)

Given c, h which are the vectors and A, G which are matrixes, we can optimize the linear

combination c · x. Here matrix G is used to specify the positive definiteness constraint.

Writing down the positive definiteness constraint of a matrix Z whose size is s × s, we

need the matrix G with size s2 × n to define the condition (where n is the number of

variables x). That means, if we reduce the number of variables, we can save the computer

memory. To do this, we define the same variable for two elements instead of constraining

two variables with the same value. On the other hand, if the value of some elements are

zero, it could also reduce the number of variables.
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After using the conditions to reduce the number of variables, we can estimate the

number of variables in the certificate.

The number of variables in Γ(1) for different RAC protocols:

n=1 d=2 d=3 d=4 d=5

k=2 10 50 153 364

k=3 28 288 1596 6160

k=4 78 1922 20706 132612

The number of variables in Γ(1+AB) for different RAC protocols:

n=1+AB d=2 d=3 d=4 d=5

k=2 15 182 1287 5964

k=3 82 4068 61860 474160

k=4 486 71258 1995810 24012612

Due to the constraint of the computer memory (128GB), we could not find the bound

of Bell-type inequality for arbitrary RAC communication protocols. We find the bound

what we can do and show the result in the main text.
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