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Abstract

The objective of this paper is to solve the dominating problem on circular-arc graphs in O(1) time.
This problem has not been solved in O(1) time before, even on the ideal PRAM model. In this paper,
we take advantage of the characteristics of the PARBS (processor arrays with reconfigurable bus sys-
tems), which can connect the inner buses in O(1) time. We use O(n?) processors in the study. By com-
bining the characteristics of PARBS and improving the methods of [14]{15}, we are able to derive con-

stant-time algorithms for this problem.

Keywords: circular-arc graphs, dominating problem, PARBS (processor arrays with reconfigurable bus

systems).

Introduction

A graph is an ordered pair G=(V, E), where
V is a finite set of n=|V| elements called vertices
and EC{(x, y)|x, yE V, x # y} is a set of m=|E|
unordered vertex pairs called edges. Let S={S,, S,,
Sz, ©*, Sua} be a family of sets with each S; (0 <
i < n-1) being a set. A graph G is an intersection
graph of S if there is a one-to-one correspondence
between V and S such that the vertices in V are
adjacent if and only if their corresponding sets
have a nonempty intersection [5]. There are many
applications for circular-arc graphs, such as genetics
[6], course scheduling [6], the channel assignment
problem in computer-aided design [6], and so on.
These applications rise some interesting problems
on circular-arc graphs. There are many related re-
searches as can be found in [2] [4] [7] [11] [12] [13].
The set S is then called the intersection model of G
[17 [3] [7] [8]- When S is a set of circular-arcs on a
circle, G is called a circular-arc graph [5]. A circular-

arc graph is called a proper circular-arc graph  if
there is no circular-arc containing the other arcs or
contained by the other arcs, in the given set of cir-
cular-arcs. For instance, Fig. 1 gives a set of proper
circular-arcs. If a circular-arc graph is not proper, it
is called a general circular-arc graph. For instance,
Fig. 2 gives a set of general circular-arcs. Given a
set A of circular-arcs, LARGE(A) denotes the set
of arcs which are not contained by any other arcs
[15]. For instance, in Fig. 2, LARGE(A)={1, 2, 3,
4, 8, 10, 11}. Note that arc 5 doesn’t belong to
LARGE(A), because arc 5 is contained by arc 4.
The processor arrays with reconfigurable bus sys-
tems model (abbreviated to PARBS) consists of a
VLSI array of processors connected to a reconfig-
urable bus system which can be used to dynamical-
ly obtain various interconnection patterns between
the processors. Each processor of PARBS has four
inner ports and outer ports. The four inner ports
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could be connected dynamically in O(1) time. The
four outer ports I*, I, J* and J° connect with its
four neighborhood. In Fig. 3, we show some possi-
ble connections inside a processor. In this paper,
the notation {q., q2, ***, q.} is used to represent
the local connection within a processor. This means
a group of ports qi1, qz, ", q. is connected to-
gether within the processor. For example, in Fig.
3(h), the local connection within the processor can
be represented by {J*,1*} and {J-, '}, where
ports J* and I* are connected, and ports J-and I-
are connected.

A set BCV is called a dominating set if each
vertex in A is adjacent to at least one member of B.
The dominating problem is to find a dominating set
with the minimum number of elements in it
[10][11]. In [10], Hsu and Tsai give an O(n) time
algorithm for the dominating set problem on circu-
lar-arc graphs. For this problem, Yu, Chen and Lee
give an O(log n)-time parallel algorithm with O(n)
processors on PRAM models for circular-arc
graphs [14]. For solving the dominating set problem
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on interval graphs, Olariu and Schwing present an
algorithm in constant time on an n*n PARBS
model [13].

In this paper, we will develop O(1) time algo-
rithms on a (2n)*n PARBS model to solve the
dominating set problem on circular-arc graphs. In
section II, we will introduce SMDS relations and its
relative algorithm. SMDSJi] = j if arc j is the far-
thest arc in clockwise direction such that those arcs
from arc i to j can be dominated by arc i or arc j.
This relation is helpful for finding an answer. Ac-
cording to the SMDS relations, we can construct a
SMDS relation graph. In section III, we classify
SMDS relation graphs into two patterns, Pattern 1
and Pattern 2. In order to find one answer, we
have to study the properties of SMDS relation
graphs. In section IV, we can use these properties
to find one answer for proper circular-arc graphs.
In section V, we will introduce the algorithms for
general circular-arc graphs. In section VI, we shall
state our conclusions.
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SMDS algorithm

There are two phases for solving dominating
problem on proper circular-arc graphs. In the first
phase, we find relation SMDS[i] for each arc i. In
the second phase, we find a dominating set. In oth-
er words, if arc i belongs to a dominating set, arc
SMDS/[i] is the best next arc to be put into the
dominating set. SMDS[i}=j if arc j is the farthest
arc in clockwise direction such that those arcs from
arc i to j can be dominated by arc i or arc j. For
instance, in Fig. 1, SMDS[1]=6 because arcs 2, 3, 4
and 5 are dominated by arc 1 or 6. SMDS[1] + 7
because arc 5 can not be dominated by arc 1 or 7.

In [8], we have SMIS and SMCC algorithms to
find relations SMIS and SMCC, where SMIS/[i]=j if
arc j owns the nearest ending point among those
arcs which have empty intersection with arc i in
clockwise direction [15], and SMCC[i]=j if arc j
owns the farthest ending point among those arcs
which have nonempty intersection with arc i in
clockwise direction [15]. We will apply SMIS and
SMCC algorithms [9] in our SMDS algorithm.
Theorem 1. For a set of n circular-arcs, if there is
no arc which dominates all the arcs, then
SMD§J[i]=SMCC[SMIS[i]] for 0 < i < n-1 [8].

The following algorithm will find the SMDS
relation for each arc in O(1) time on an O(n?)
PARBS. Table 1 shows the values of the SMIS,
SMCC and SMDS relations for the graph in Fig. 1
after this algorithm.

Table 1  The values of SMIS[j], SMCC][j] and
SMDS]j] for the graph in Fig. 1
j 01 2 3 4 5 6 7 8 9

SMISjl (2 § 6 6 7 7 8 9 0 O

SMCCj] |1 4 5 5 6 6 7 8 9 9

SMDS[jJ S 6 7 8 8 8 9 9 1 1

SMDS Algorithm

(We explain the algorithm by using the example in
Fig. 1)

Input: ARC[j]J.HEAD and ARC]Jj]. TAIL in P(0, j)
for 0 < j< n-1, where ARC[jJ.HEAD and
ARCJj].TAIL record the addresses of beginning
and ending points of arc j.

Output: SMDSJ[j] in P(0, j) for 0 < j < n-1.

Step 1: Sort the n arcs ARC[j], 0 < j < n-1, ac-
cording to the coordinates ARC[0].HEAD, ARC[1].
HEAD, - , ARC[n-1].HEAD in increasing order,
which are stored in P(0, j), 0 < j < n-1, respectively.
This step can be computed in O(1) time on a 2-D
n*n PARBS [5].

Step 2: Apply SMIS algorithm and SMCC algo-
rithm in [9] to find SMIS[j] and SMCCJ[j], which
are stored in P(0, j) for 0 < j < n-1.
Step3:ForO0<isnland 0<j<n-l,ifi =]
P(i, j) makes a connection {I*, 1-,J*,J"}; other-
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wise, P(i, j) makes connections {I*, I} and {J*, I-}. =i, P(i, j) makes a connection {1*,1,J*,J"}; oth-
And then P(0, j) broadcasts SMCC[j} and SMIS[j] erwise, P(i, j) makes connections {I*, 1"} and {J*,
to port 1*. P(i, 0) sets the value received from port J-}. And then P(i, 0) broadcasts SMC(]Ji] to port J*.
J+ to be SMCC]Ji]. (See Fig. 4(a)) P(0, j) sets the value received from port I* to be
Step 4: For 0 <i < n-1 and 0 <j < n-1, if SMIS[j] SMDSJj]- (See Fig. 4(b))
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Fig. 4(b) After Step 4 of SMDS algorithm
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Two patterns of the SMDS relation graphs

In the above section, we have found the rela-
tion SMDS. But how to use it to find the minimum
dominating set? There is an idea about finding the
minimum dominating set on proper circular-arc
graphs. According to the SMDS relation, we can
construct a 1-1 corresponding graph, and define
this graph to be an SMDS relation graph. In an
SMDS relation graph, a directed edge from node i
to node j means that SMDSJ[i] =j. Define SMDS'[i]
= SMDSJi] and SMDS*[i] = SMDS*![SMDS[i]] if
k>1. See Fig. 5 for a depiction. Note that the
nodes with the indices between SMDS*[0] and
SMDS**![0] are put at the same level as node
SMDS*[0], k=0, 1, 2, --- . For instance, in Fig. 5,
nodes 1, 2, 3, 4 are put at level 0 because SMDS[0]
= 5. After we convert the SMDS relation for a
proper circular-arc graph into an SMDS relation
graph, the SMDS relation graph will help us to
find one solution for this problem.

Let DS[i] denote a dominating set formed
from arc i. For example, in Fig. 5, DS[0] = {0, 5,
8}, DS[1] = {1, 6, 9}, DS[2] = {2, 7, 9, 1}, DS[3]
= {3,7,9, 1}, DS[4] = {4, 8§, 1}, DS[5] = {5, §, 1,
6}, DS[6] = {6, 9, 1}, DS[7] = {7, 9, 1, 6}, DS[8]
= {8, 1, 6}, DS[9] = {9, 1, 6}. Then there exists a
minimum dominating set in {DS[i]]0 < i<

Level 2

Level 1 —»

Level 0 —»

SMDSJ[0]-1} because any set without the arcs be-
tween 0 and SMDS[0]-1 doesn’t have the possibility
to be a dominating set. Hence, we just need to
consider the dominating sets formed by arcs 0, 1, -+,
SMDS[0]-1. We observe that the difference of sizes
between any two elements in {DS[i] | 0< i<
SMDS[0]-1} is at most 1.

Now we want to find out the dominating set
with minimum size. At first, we don’t consider the
edges between i and SMDS[i] if i > SMDS][i]. For
the dominating problem, we have to find a shortest
paths formed by node i, 0 < i< SMDS[0]-1. At
last, we construct DS[i]. If arc j is an element of
DS[i], we let MDSJ[j]=1 to denote the final solution.

The SMDS relation graph has some properties.
They are shown in the following lemmas. Due to
page limit, we omit the proofs.

Lemma 1: Given an SMDS relation graph, the fol-

lowing properties will be satisfied:

(1)if i, < i,, 1, < SMDS[i1] and i, < SMDS][i,],
then SMDSJ[i,] < SMDS[i.],

(2) if i, < SMDS[i1], i.< SMDS][i,] and SMDS][i,]

< SMDSJi,], then i, < i,

(3) the indices of the elements in A; = {i| SMDSJi]=
J, j>1} are continuous. That is A; ={min(A;),
min(A;)+1, min(A;)+2, -, max(Aj)}.

j

ROOTYj]

o N

ROOT_SMDS]j]

—_—
—

—l = o0 O

GOODJj]

—_] —_= ol -

-
o

Fig. 5 An SMDS relation graph for Fig.1
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Lemma 2: Given an SMDS relation graph, we first
remove the edges between i and SMDS[i] if i >
SMDSJi]. Let A; ={i|SMDS{[i]= j, j > i}. Then the
indices of the elements in A;U A, are continu-
ous.

At first, we don’t consider the edges between i
and SMDS[i] if i > SMDS[i]. Now the SMDS rela-
tion graphs for proper circular-arc graphs can be
classified into two patterns in general. See Fig. 6
and Fig. 7 for a depiction. Pattern I consists of one
or more trees Ty, T, -+, T,. In each tree T,, the
lengths of the paths from the root to its leaves ex-
cluding nodes SMDS[0], ---, n-1 are the same. For
instance, Fig. 6 shows a graph of Pattern 1. There
are 3 trees. For the first tree T,, the lengths of the
paths formed by nodes 0 and 1 are 4. For the sec-
ond tree T,, the length of the path formed by
node 2 is also 4. For the third tree T,, the lengths
of the paths formed by nodes 3 and 4 are 3. Note
that the height of each tree may not be the same,
but there are at most two kinds of heights. Pattern
2 consists of only one tree, but with two kinds of
lengths of the paths from the root to its leaves ex-

Ching-Fung Lee

cluding nodes SMDS[0], --- , n-1. Fig. 7 shows a
SMDS relation graph of Pattern 2. The lowest
common ancestor of nodes 0, 1, 2, 3, and 4 is node
12. Note that, in Pattern 2, we have exactly two
kinds of lengths in the subtrees of the lowest com-
mon ancestor. Let j be the lowest common ancestor
of nodes 0, 1, -~ , SMDS[0]-1. In Lemma 4, we
show that if 0 < i < i+1 < m < SMDSJ0] and the
lengths of the paths formed by i and i+1 are dif-
ferent, then the length of the path formed by node
m is the same as that formed by i+1. For example,
in Fig. 7, the lengths of the paths formed by nodes
1 and 2 are different, so the length of the paths
formed by node 3 is the same as that formed by
node 2. Fig. 8 shows another example of Pattern 2.
Lemma 3: Given a proper circular-arc graph with
n circular-arcs, if its SMDS relation graph belongs
to Pattern 2, then there will exist a lowest common
ancestor j of the nodes O, 1, ---, SMDSJ0]-1. In ad-
dition, there will exist a node i such that SMDS*[0]
= SMDS*[1] = -+ = SMDS*[i] = SMDS*![i+1]
= = SMDS*'[SMDS[0]-1] = j.

f 0 1 2 3 4

ROOTIj] 17 17 18 16 16

ROOT_SMDS[jl| 4 4 3 3 3
GOODIj 1 1 1

Fig. 6 Pattern 1
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J
ROOTY(j]
ROOT_SMDS|j] 2 2 2 2 2
GOOD[j] 1 0 0
Fig. 7 Pattern 2
J 0 1 2 3 4
ROOTYj] 14 14 14 14 14
ROOT_SMDS(j] 1 1 1 1 1
GOODJj] 1 1 0 0 0

Fig. 8 Pattern 2: another example

Find one dominating set

On PARBS models, we cannot find several op-
timal solutions concurrently, because some conges-
tion may happen. What we can do is to just find
one solution. Now we want to know which paths
have the possibility. If a path formed by node j is

37

the shortest one, it may contain one solution and
we let GOODI[j] = 1 to denote this situation,
where j=0, 1, -, SMDSJ[0]-1; otherwise, GOODJ[j]
= 0. Note that the difference of sizes between any
two elements in {DS[0}, DS[1), --- , DS[SMDS[0}-
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1]} is at most 1. How to find a path with the
shortest length? We let each root broadcast its in-
dex and its SMDS value downward. For 0 < j <
SMDSJ0}-1, node j sets ROOT]j] to be the index of
its root and sets ROOT_SMDS[j| to be
SMDS[ROOT]Jj]]. If (0 < j< SMDS[0]-1) and
(ROOT_SMDS[j] = j), the leaf node | sets
GOODJj] = 1; otherwise sets GOODJj] = 0. For
instances, in Fig. 5, ROOT_SMDS[0] = 1= 0,
ROOT SMDS[1] = 1= 1, so we let GOODI[0] =
GOODI[1] = 1. In Fig. 6, ROOT SMDS[0] = 4 =
0, ROOT _SMDS[1] = 4 = 1, ROOT_SMDS[2] = 4
=z 2 and ROOT SMDS[3] = 3= 3. So we let
GOOD{[0] = GOOD[1] = GOOD[2] = GOOD[3]
= 1. In Fig. 7, ROOT_SMDS[0] = 2= 0,
ROOT SMDS[1] = 2> 1 and ROOT SMDS[2] =
2= 2. Then we let GOOD[0] = GOOD[1] =
GOOD[2] = 1.

At last, we find the largest j such that
GOODJj] = 1 and then the path formed by node j
is the minimum dominating set. In [13], Olariu and
Schwing have shown that, given a collection of
trees containing n nodes altogether, the nodes lying
on the unique path joining a given node and the
root of some tree in the collection, can be identi-
fied in O(1) time on a PARBS of size n*n. Since
ROOT_SMDS[ROOTI0]] = 0 (i.e. GOOD[0] = 1),
we can guarantee that we can find one j such that
GOODI[j] = 1 in this process. For instance, in Fig.
6, we find that j=3 because GOODI[3] = 1, so we
choose {3, 10, 16} as our final solution. In Fig. 7,
GOODJ[0] = GOOD[1] = GOOD|2] = 1, so we
choose {2, 8, 12, 14} as our final solution.
Theorem 2: Given a proper circular-arc graph with
n arcs, the dominating set problem can be solved in
O(1) time on a (2n)*n PARBS.

The following algorithm shows how to find the
solution on PARBS. Table 2 shows the final values
of MDSJj] for Fig. 1.

Algorithm for finding the minimum dominating

Ching-Fung Lee

set
(We explain the algorithm by using the example in
Fig. 1.)
Input: SMDS[j] in P(0, j), 0 < j < n-1.
1 if arc i belongs to the
minimum dominating set,
0 otherwise,
in P(i, 0) for 0 < i < n-1.
Step 1: For 0 < i< n-1 and 0< j< n-1, P(i, j)
makes a connection {I*, I-}. Then P(0, j) broad-
casts SMDSJ[j] to port 1 *. (See Fig. 9(a))
Step2: For0<i<nland 0<j<n-1,if (i =j)
or ( (SMDS[j] = i) and (SMDSJj] > j) ), P(i, j)
makes a connection {I*, I-,J*, J-}; otherwise, P(i,
j) makes connections {I*, I"}and {J*,J"}.  And
then P(j, j) broadcasts j and SMDS[j] to port J- if
SMDS[j] < j. P(0, j) sets the value received from
port [* to be ROOT[j] and ROOT_SMDS[j]. (See
Fig. 9(b))
Step 3: P(0, 0) broadcasts SMDS[0] to all proces-
sors. For 0 < j < n-1, if (0 < j < SMDS§[0]-1) and
(ROOT_SMDSJj] < j), P(0, j) sets GOODJ[j] = 1;
otherwise sets GOODJj] = 0.
Step 4: For 0 < j< n-1, if GOODJj] = 0, P(0, j)
makes a connection {J*, J°}; otherwise, P(0, j)
makes no connections. And then P(0, n-1) broad-
casts a signal "#" to port ] *. (See Fig. 9(c))
Step 5: Find a path from node j to node ROOTYj]
if if P(0, j) received the signal "#" from port J* but
didn’t receive the signal "#" from port J- in Step 4.
This step can be computed in O(1) time on a 2-D
n*n PARBS [13]. ( In [13], Olariu and Schwing
have shown that, given a collection of trees con-
taining n nodes altogether, the nodes lying on the
unique path joining a given node and the root of
some tree in the collection, can be identified in
O(1) time on a PARBS of size n*n. ) Now, for 0 <
j < n-1, P(0, j) sets MDSJj] =1 if node j is on the
path; otherwise P(0, j) sets MDS[j] =0. (See Fig.
9(c))

Output: MDS[i] =
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Fig. 9(c) After Steps 3, 4 and 5 of Algorithm for finding the minimum dominating set

Table 2 The values of MDS]Jj] for Fig. 1

MDS[j} 0 1 0 0

Find the dominating set on general circular-arc graphs

Note that if arc j doesn’t beleng to LARGE(A),

the dominating set DS[j] formed by arc j will not
be the minimum dominating set. This has been
proven in [15]. Hence we can find the LARGE(A)
first. For example, in Fig. 2, LARGE(A)= {1, 2, 3,
4, 8, 10, 11}. Then we take advantage of the algo-
rithm for proper circular-arc graphs to find the
minimum dominating set of LARGE(A)= {1, 2, 3,

4, 8, 10, 11}. Hence we find that {1, 6, 9} is the
minimum dominating set of LARGE(A). Then {1,
6, 9} is the dominating set in Fig. 2. It is easy to
show that LARGE(A) can be found in O(1) time
on a PARBS with O(n?) processors.

Theorem 3: Given a general circular-arc graph
with n arcs, the minimum dominating set problem
can be solved in O(1) time on a (2n)*n PARBS.

Conclusion

In the previous literatures, the best sequential
algorithm solves this problem in O(n) time [10]. At

present, our algorithm is not cost-optimal. Appar-

ently, the gap between our cost and the sequential
cost is still large. Hence, in the future, we hope
that we can improve the cost to be O(n'*€), or
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O(n log n), while keeping the time complexity in
O(1). Additionally, it seems that devising a con-
stant time algorithm to solve the "weighted" version

of this problem is difficult. This promises to be a
very interesting topic for further research.
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AR » AR o] RS RE R HE 2 R B 23R8 5| (PARBS, processor arrays
with reconfigurable bus systems) £ 7E O(1) B sh BYREELE NI A R ESER 25508
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