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摘要 

本研究提出一種以深度學習技術為基礎應用於室內移動型智慧機器人之線

上人體動作辨識系統。此系統利用輸入的視覺資訊且在攝影機朝向目標人物移動

的狀況下進行線上人體動作辨識，主要目的在提供智慧型人機互動除了聲控與螢

幕觸控外更多的介面選擇。 

本系統採用三種視覺輸入資訊，分別為彩色影像資訊、短期動態資訊以及人

體骨架資訊。且在進行人體偵測時涵蓋五個階段，分別為人體偵測階段、人體追

蹤階段、特徵擷取階段、動作辨識階段以及結果整合階段。本系統首先使用一種

二維姿態估測方法用來偵測影像中的人物位置，之後利用 Deep SORT 追蹤方式進

行人物追蹤。之後，在已追蹤到的人物身上擷取人體動作特徵以便後續的動作辨

識。本系統擷取的人體動作特徵有三種，分別為空間特徵、短期動態特徵以及骨

架特徵。在動作辨識階段，本系統將三種人體動作特徵分別輸入三種訓練好的神

經網路(LSTM networks)進行人體動作分類。最後，將上述三個不同神經網路的輸

出結果整合後作為系統的分類結果輸出以期達到最佳成效。 

另外，本研究建立一個移動式攝影機下的人體動作資料庫(CVIU Moving 

Camera Human Action dataset)。此資料庫共計3646個人體動作影片，其中包含三個

不同攝影角度的11種單人動作和5種雙人互動動作。單人動作包括站著喝水、坐著

喝水、站著吃食物、坐著吃食物、滑手機、坐下、起立、使用筆記型電腦、直走、

橫走和閱讀。雙人互動動作包括踢腿、擁抱、搬東西、走向對方和走離對方。此

資料庫的影片也使用來訓練與評估本系統。實驗結果顯示，空間特徵之分類器的

辨識率達96.64%，短期動態特徵之分類器的辨識率達81.87%，而骨架特徵之分類

器的辨識率則為68.10%。最後，三種特徵之整合辨識率可達96.84%。 

 

 

關鍵字: 線上人體動作辨識、室內移動行智慧機器人、移動式攝影機、深度

學習、長短期記憶、雙向長短期記憶、強化時序長短期記憶、空間特徵、時序特

徵、結構特徵。 
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Abstract 

This research proposes a vision-based online human action recognition system. 

This system uses deep learning methods to recognise human action under moving 

camera circumstances. The proposed system consists of five stages: human detection, 

human tracking, feature extraction, action classification and fusion. The system uses 

three kinds of input information: colour intensity, short-term dynamic information and 

skeletal joints. 

In the human detection stage, a two-dimensional (2D) pose estimator method is 

used to detect a human. In the human tracking stage, a deep SORT tracking method is 

used to track the human. In the feature extraction stage, three kinds of features, spatial, 

temporal and structural, are extracted to analyse human actions. In the action 

classification stage, three kinds of features of human actions are respectively classified 

by three kinds of long short-term memory (LSTM) classifiers. In the fusion stage, a 

fusion method is used to leverage the three output results from the LSTM classifiers. 

This study constructs a computer vision and image understanding (CVIU) Moving 

Camera Human Action dataset (CVIU dataset), containing 3,646 human action 

sequences, including 11 types of single human actions and 5 types of interactive human 

actions. Single human actions include drink in sit and stand positions, eat in sit and stand 

positions, play with a phone, sit down, stand up, use a laptop, walk straight, walk 

horizontal, and read. Interactive human actions include kick, hug, carry object, walk 

toward each other, and walk away from each other. This dataset was used to train and 

evaluate the proposed system. Experimental results showed that the recognition rates of 

spatial features, temporal features and structural features were 96.64%, 81.87% and 

68.10%, respectively. Finally, the fusion result of human action recognition for indoor 

smart mobile robots in this study was 96.84%. 

 

Keywords: Online human action recognition, indoor smart mobile robot, deep 

learning, long short-term memory, bi-directional long short-term memory, temporal 

enhancement long short-term memory, spatial feature, temporal feature, structural 

feature. 
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Chapter 1 Introduction 

 

1.1 Research Motivation 

Indoor smart mobile robots have rapidly been adopted for human society and are 

widely used in public or private indoor spaces for guidance, entertainment, home 

service, security and so on. For example, a guidance robot such as Troika [1], shown in 

Figure 1.1 (a), moves around in the airport and provides directions and guidance for 

tourists. Entertainment robots such as Aibo [2], which is a dog-shaped entertainment 

robot as shown in Figure 1.1 (b), can be used to play with children or pets in the house. 

Home service robots such as Zenbo [3], shown in Figure 1.1 (c), are used to provide 

company to family members. Multifunctional smart robots such as Pepper [4], shown in 

Figure 1.1 (d), can be used as receptionists at offices and banks, home companions at 

home, and educational robots at schools, universities, and colleges. 

These kinds of robots have a level of interaction and self-determination abilities, 

which are due to the “intelligence” of the robots. This intelligence is created through 

artificial intelligence techniques. Robots with intelligence are called smart robots. 

 

The aforementioned indoor smart mobile robots, such as Troika [1], Aibo [2], 

Zenbo [3], and Pepper [4], have already been released and used in houses, airports, 

stores, and other indoor spaces. These robots are respectively produced by Lucky-

Goldstar (LG), a South Korean multinational electronics company; Sony, a Japanese 

          

 

Figure 1.1 Indoor smart mobile robots (a) Troika (b) Aibo (c) Zenbo (d) Pepper 

(a) Troika [5] (b) Aibo [6] (c) Zenbo [7] (d) Pepper [8] 
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multinational conglomerate corporation; Asus, a Taiwan-based multinational computer 

and phone hardware and electronics company; and SoftBank Robotics, a holding 

company in the SoftBank Group. All of these robots mainly interact via voice 

commands. Zenbo can also interact via a touch screen. 

In summary, indoor smart mobile robots are mainly interactive through the 

application of voice recognition systems and touch screen systems. Indeed, verbal 

commands and screen touching commands are direct and smart human-robot interactive 

techniques. However, voice recognition systems typically have limitations with respect 

to different languages, various accents and even speaking tone. A touch screen system 

limits the possible distance between the user and the robot. That is, a user must be close 

enough to touch the screen or to see the content of icons shown on the screen. 

Vision-based recognition systems provide an alternative type of direct and smart 

human-robot interaction. The users interact with the robot through a vision-based human 

action recognition system. With this system, users are only required to perform a daily 

life action in front of the robot, and the robot is expected to see and recognise the action 

and then perform the corresponding reflection. For example, if a robot sees the user sits 

on a chair, then the robot can move to the user and provide the user some water and food. 

With this approach, users who speak different languages can smoothly interact with the 

robot. Further, because of the vision-based setting, the robot is capable of interacting 

with a human remotely. Thus, the barriers and limitations associated with voice 

recognition and touch screen systems can be solved by using a vision-based online 

human action recognition system. Such systems can therefore diversify human-robot 

interaction approaches for future robot products. 

Moreover, many global market companies have a positive outlook on robot 

markets and have forecasted increases in the coming years in smart robots, indoor robots, 

mobile robots, service robots, and other robots. Therefore, robot markets, no doubt, will 

become a bull market of the world. 

The smart robot market is a promising prospect according to research from 

Maximize Market Research, as shown in Figure 1.2 [9], where the number below the 

bar indicates the years. The number above the bar indicates the market value to the 

corresponding years, and the unit is billion USD. The research from Maximize Market 

Research has reported and forecasted the value of the smart robot market from 2017 to 

2026. In 2017, the smart robot market was valued at USD 4.54 billion and the market is 
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expected to grow to USD 29.46 billion by 2026 at a Compound Annual Growth Rate 

(CAGR) of 23.1% over the forecast period from 2017 to 2026. 

 

This research also reported and forecasted the value of the global indoor robot 

market from 2018 to 2026, as shown in Figure 1.3 [10], where the number below the bar 

indicates the year and colours indicate particular regions. The global indoor robot market 

is predicted to have a CAGR of 28.9% over the forecast period from 2018 to 2026. 

 

Markets And Markets reported and forecasted the value of global mobile robot 

market from 2018 to 2023, as shown in Figure 1.4 (a) [11], where the number below the 

green bar indicates years. The number in the green bar indicates the market value for the 

 
Figure 1.2 Smart robot market from 2017 to 2026 as reported by Maximize 

Market Research [9] 

 
Figure 1.3 Global indoor robot market from 2018 to 2026 as reported by Maximize 

Market Research [10] 
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corresponding years and the unit is billion USD. In 2018, the mobile robot market was 

valued at USD 18.7 billion and the market is expected to grow to USD 54.1 billion by 

2023 at a CAGR of 23.71% over the forecast period from 2018 to 2023. 

Mordor Intelligence [12] reported and forecasted the value of the global service 

robotics market from 2020 to 2025, as shown in Figure 1.4 (b), where the number below 

the orange bar indicates the years and the arrow indicates the CAGR during 2020 to 

2025. The value of global service robotics market in 2019 was USD 14.39 billion and it 

is expected to grow to USD 63.80 billion with a CAGR of 25.34% over the forecast 

period. 

 

 

The overall robotic market is shown in Figure 1.5 [13], where the number below 

the blue bar indicates the years. The arrow indicates the CAGR during 2020 to 2025. 

Mordor Intelligence [13] reported the value of the robotic market was USD 39.72 billion 

in 2019 and predicted it to have a CAGR of 25% over the forecast period from 2020 to 

2025. 

         
    (a)                                 (b) 

Figure 1.4 Global robotic market (a) global mobile robotics market from 2018 to 

2023 as reported by Markets And Markets [11] (b) global service robotics market 

from 2020 to 2025 as reported by Mordor Intelligence [12] 

 
Figure 1.5 Robotics market summary from 2020 to 2025 reported by Mordor 

Intelligence [13] 
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Furthermore, Mordor Intelligence also shows the overall robotics market growth 

rate during 2019 to 2024 by region, as shown in Figure 1.6 [13], where different colours 

indicate different growth rates. Specifically, green regions indicate high growth rates, 

yellow regions indicate medium growth rates and red regions indicate low growth rates. 

The colours cover over half the world. Undoubtably, robotics markets have a huge 

economic impact globally. 

 

Indoor smart mobile robots seem to have a tremendous economic outlook and a 

high chance of bringing considerable economic benefit to many countries. With such 

high growth rates in the indoor smart mobile robot markets, it is clear such robots will 

be widely used in the foreseeable future. Therefore, a diversity of hardware and software 

products is necessary to satisfy different kinds of customer requirement. Here, hardware 

refers to the physical parts of the robots, such as the central processing unit, robot 

appearance, and monitor. The software refers to the abstract part of the robots, such as 

control systems, input recognition systems, output systems, and inference systems. 

Improvements in both hardware and software will increase the economic values of the 

robots. This research focuses on improving the input recognition system, which is part 

of the software. 

Different types of input recognition systems process different kinds of input 

information and can result in different types of human-robot interactions. For example, 

a voice recognition system lets robots interact with humans via voice commands, a touch 

screen system lets robots interact with humans via screen touching, and a human action 

 
Figure 1.6 Robotics market growth rates by regions [13] 
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recognition system lets robots interact with humans via human action commands. 

This research develops a vision-based online human action recognition system for 

indoor smart mobile robots. The system is expected to let a robot recognise human 

actions while the robot is moving towards the user as well as recognise human actions 

online. 

1.2 Background and Difficulty 

Human action recognition has been a challenging computer vision problem in 

video analysis for decades. Methods of human action recognition can be divided into 

online and offline approaches. Offline methods classify human actions after obtaining 

the entire sequence. By contrast, online methods can classify actions from only a partial 

sequence. Both types of method classify the action of the current frame based on the 

information from previous frames. Only online methods have the characteristic of early 

action classification. 

Online human action recognition can be done using a traditional machine learning 

approach or a deep learning approach. A machine learning example is Hoai and De la 

Torre’s [Hoa12] proposed maximum-margin framework based on a structured output 

support vector machine (SVM) to achieve online action prediction. A deep learning 

example is De Geest and Tuyelaars’ [De18] proposed two-stream feedback neural 

network built based on a recurrent neural network (RNN) with long-short term memory 

networks (LSTM) [Hoc97]. Both approaches are popular for solving the online human 

action recognition problem. However, this research utilises a deep learning method to 

build the online human action recognition system and tries to explore the characteristics 

of recurrent neural networks. 

Most online action recognition systems [Hoa12] [De18] are designed to process 

video obtained from stationary camera videos. To design this kind of system, there are 

two main problems to solve:  

(1) the transformation of real-world three-dimensional (3D) human action into 

two-dimensional (2D) video might cause object occlusion,  

(2) the non-rigid body of the target person might cause difficulty in human tracking 

and recognition.  

In addition, it is hard to simulate the vision of a mobile robot from stationary 
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camera videos. Mobile robots are capable of moving so a moving camera is required to 

simulate vision. In the rest of the article, human action videos recorded by stationary 

camera are called S-Videos and those recorded by moving camera are called M-Videos. 

Developing an online action recognition system with M-Videos is more difficult 

than with S-Videos. For example, while the camera is moving, (1) the background is 

changing in every frame; (2) distances between target persons and the camera are 

changing; therefore, the size of the target person in the video is also changing; (3) 

illumination of each frame may not remain consistent; and (4) a moving camera may 

experience camera vibration. 

Trends in smart mobile indoor robots are emerging, and robots will service elders 

in their house, help humans in the airport, and be used in other indoor spaces. Further, 

as mentioned above, interaction through human action commands is a direct and smart 

human-robot interactive approach. In response to these future trends, this research 

proposes a vision-based online human action recognition system using a deep learning 

method to recognise human actions under moving camera circumstances for indoor 

smart mobile robots. 

1.3 Research Contribution 

This research has three main contributions: the collection of an M-Video dataset 

of human actions, a human action recognition system to recognise human actions under 

moving camera circumstances, and a proposed method that simultaneously utilises 

multiple types of feature information to recognise human actions. 

(1) M-Video dataset 

Many human action datasets have been established and provided by different 

groups and universities for human action recognition experiments. However, many of 

these datasets, including NTU RGB + D 120 Dataset (NTU) [14], Berkeley Multimodal 

Human Action Dataset [15], KTH-Dataset [16], SBU Kinect Interaction Dataset [17], 

and PKU Multi-Modality Dataset (PKU-MMD) [18], are S-Videos. M-Videos datasets 

have rarely been established. 

Therefore, this research collects an M-Video dataset called computer vision and 

image understanding (CVIU) Moving Camera Human Action dataset. The human 

actions are recorded while the camera is moving towards the target persons. Chapter 4 
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provides details about this dataset. 

(2) Human action recognition system under moving camera circumstances 

Most research in this field focuses on stationary camera circumstances. However, 

there has been little development of human action recognition systems under moving 

camera circumstances, which the current research aims to do. The proposed system 

applies human detection and human tracking to the target persons, and then extracts three 

types of features from the target persons to provide respective LSTM classifiers to 

analyse the human actions. Finally, a fusion method is used to integrate these three 

output results to determine the final classification for the human action. Experimental 

results show that the proposed model is robust and stable. 

(3) Utilise three kinds of feature information simultaneously 

The developed system recognises human actions using three kinds of feature 

information simultaneously: features obtained from red-green-blue (RGB) colour 

images, features obtained from optical flow and features generated from human skeletal 

joints. Each type of feature has a tailored LSTM model and an output result. We then 

use fusion methods to integrate these three output results to improve the human action 

recognition rate. Experimental results show that these three kinds of features can cover 

each other’s deficiencies. 

1.4 Thesis Framework 

This thesis comprises 5 chapters. Chapter 1 introduces the research motivation, 

research background and difficulty. Chapter 2 discusses related works. Chapter 3 

illustrates and details the system flowchart. Chapter 4 presents experimental results to 

show the improvement of the proposed system. Finally, Chapter 5 concludes this 

research and presents future works. 
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Chapter 2 Related Work 

 

This chapter discusses some relevant research on human action recognition. The 

first part introduces various types of features, including spatial and temporal features. 

The second part introduces human action classifiers. 

2.1 Features of Human Action Recognition 

Extracting suitable features to represent different actions is key to achieving 

human action recognition. Spatial and temporal features are those associated with space 

and time, respectively. Generally speaking, spatial features can be extracted in one frame 

whereas temporal features can be extracted from at least two successive frames. 

(1) Spatial Features 

Skeletal joints are one type of spatial feature. Many datasets have proposed 

skeletal joint information for researchers, such as NTU Dataset [14], PKU-MMD 

Dataset [18], and SBU Kinect Interaction Dataset [17]. NTU [14] and PKU-MMD 

Dataset [18] provide 25 3D-location joints for each person. SBU Kinect Interaction 

Dataset [17] provide 15 3D-location joints for each person. Many researchers [Han18] 

[Jun18] [Sha16] [Son18] [Tu18] [Li17] [Liu18] have used skeletal joints as features to 

classify human actions, although some have used skeletal joints provided by the 

established datasets and some have extracted their own data. 

Skeletal joints can be preprocessed to increase their quality as features. Jun and 

Choe [Jun18] presented data-augmentation methods, such as tilting, flipping, and scale 

variation on the skeletal joints, to enlarge their training dataset. Tu et al. [Tu18] proposed 

an LSTM auto-encoder model (LSTM-AE) to eliminate noise and preserve the whole 

action representation of the skeletal joints. Song et al. [Son18] proposed a spatial and 

temporal attention model to detect and recognise human actions. They also preprocessed 

the skeletal joints to maintain consistency for joint position and different perspectives. 

They smoothed each skeletal joint position to decrease the impact of noise before human 

action recognition and implemented an attention-based model to enhance the important 

skeletal joints. 

Skeletal joints can be also used to extract higher-level features. Li et al. [Li17] 
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calculated the Euclidean distance between each pair of skeletal joints, and the area of 

the triangle region among three neighbouring skeletal joints as higher-level features of 

human action classification. 

Liu et al. [Liu18] proposed a tree-structure based traversal method to represent the 

structure of skeletal joints. This kind of representation links neighbouring skeletal joints 

to enhance their interdependency. 

Soomro et al. [Soo19] proposed an online action localization and prediction 

system. They extracted individual skeletal joints using a Convolutional Pose Machines 

(CPM) [Wei16] method. Moreover, they proposed a high level structural information 

method to reduce the influence of noise by smoothing the locations of obtained skeletal 

joints, and to minimise the displacements of joint locations by scaling the height of the 

skeletal joints. 

Colour/intensity information is another type of spatial feature extracted by various 

methods. Some researchers [Ull18] [De18] [Ouy19] [Hua19] [You19] [Goe18] [Du18] 

[Liu19] have used neural network methods, and others [Ni11] [Liu10] have used 

traditional image processing methods. 

Ni and Xu [Ni11] proposed a statistical model based on sparse representation of 

space-time features to recognise human actions. This model uses the Harris3D detector 

to find the point of interest in space-time, and then applies a Histogram of Gradients 

(HOG) descriptor to extract the spatial features. Liu et al. [Liu10] proposed an action 

recognition framework based on multiple features. The proposed method uses Cuboids 

[Dol05] and 2D Scale-Invariant Feature Transform (SIFT) to extract local spatial 

features. Moreover, a frame differencing method is implemented to focus on the region 

of interest and 2D Gabor filters are applied to extract global spatial features. 

Ullah et al. [Ull18] proposed a human action recognition model using a bi-

directional LSTM model (BiLSTM) [Sch97]. The proposed model extracts spatial 

features from the last fully connected layer of a pre-trained convolutional neural network 

(CNN) model, AlexNet [Kri12]. Ouyang et al. [Ouy19] proposed a network consisting 

of a 3D CNN model [Tra15] and an LSTM model to recognise human actions. In this 

architecture, they split an action sequence into 25 clips and randomly select 16 frames 

in each clip. These selected frames are resized into 112 × 112 pixels to be input into 

the 3D CNN. The output of the last fully connected layer of the 3D CNN is defined as 

the spatial features. 
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Huang et al. [Hua19], You and Jiang [You19], Liu et al. [Liu19], and Goel et al. 

[Goe18] developed online systems. Huang et al. [Hua19] proposed an online action 

detection and prediction model based on a convolutional recurrent neural network 

(RNN). In this model, spatial features are extracted from the output of the last 

convolutional layer of a pre-trained Visual Geometry Group (VGG)-16 model [Sim14]. 

The feature dimensions are then reduced by employing a 1 × 1 convolutional layer. 

You and Jiang [You19] proposed a deep neural network model, Action4DNet, to 

recognise human actions. This model uses 3D CNNs to extract lower-level spatial 

features of each person. These extracted features are passed through an attention model 

[Bah14] and a global max-pooling layer [Lin13] to extract higher-level spatial features. 

Goel et al. [Goe18] proposed an online human activity detection algorithm using 

support vector machine (SVM). To extract spatial features, they proposed a Person-

Centred CNN (PC-CNN) method. PC-CNN first uses a Single Shot Multibox Object 

Detector (SSD) [Liu16] to detect persons. Next, the regions of detected persons are 

cropped and resized into 224 × 224 pixels. Finally, the resized regions are sent into a 

ResNet-152 [He16] network to extract spatial features from the last flatten layer. 

(2) Temporal Features 

LSTM networks are powerful for learning long-term dependencies and modelling 

sequential data. Moreover, LSTM networks can solve the problem of vanishing gradients 

associated with the fundamental network structure, RNN, in the training stage. 

Therefore, many researchers [Li17] [Liu17] [Tu18] [Son18] [Jun18] [Han18] [Liu18] 

[Liu19] [Ull19] [De18] [You19] [Ull18] [Du18] [Ouy19] have adopted LSTM models 

to extract temporal features. 

Song et al. [Son18] proposed a spatial and temporal attention model to exploit the 

importance of each frame. In this model, they added a temporal attention model, which 

can define the importance level of each frame, to improve the LSTM model. Liu et al. 

[Liu19] first passed skeletal joints through convolution operations to extract richer 

temporal statistics and then input these into the LSTM model to extract temporal 

features. 

De Geest and Tuyelaars [De18] proposed a two-stream LSTM feedback network 

to detect and classify actions. This network used a two-stream LSTM model to extract 

temporal features. One LSTM stream is used to interpret the input frames, and the other 

is used to capture the temporal dependencies. Ullah et al. [Ull18] proposed an action 
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recognition model based on a bidirectional LSTM (BiLSTM) network. They regularly 

sampled one-sixth of the frames in a sequence and input these into the BiLSTM model 

to extract the temporal dependencies. The goal of frame sampling is to reduce the 

computational complexity of the proposed system. 

Ouyang et al. [Ouy19] proposed a human action recognition network using both a 

3D CNN model and an LSTM model. In this architecture, they passed the input 

sequences through the 3D CNN to enhance the temporal feature representation. They 

then sent the enhanced temporal features to the LSTM model to extract the final temporal 

features. 

Optical flow is a type of temporal feature that is widely used to observe short-term 

dynamics. Jagadeesh and Patil [Jag16] addressed a vision-based human action detection 

and recognition method using optical flow. This method calculates optical flow between 

frames and then converts the calculated optical flow data to binary images. Finally, they 

applied the HOG descriptor to the optical flow to extract temporal features. Ullah et al. 

[Ull19] proposed an activity recognition network based on multilayer LSTM models. In 

this network, they used a pre-trained optical flow detection neural network, FlowNet2 

[Ilg17], to obtain optical flow. They extracted the feature maps from the final 

convolutional layers of FlowNet2 [Ilg17] and used a global average pooling to obtain 

temporal features. 

In summary, the above research adopted two kinds of spatial features: human 

skeletal joints and colour information. Importantly, skeletal joints can be used to roughly 

describe the structure of human poses whereas colour information contains more details 

of human poses. 

As mentioned above, colour information can be extracted by neural network 

methods and traditional image processing methods. Using traditional image processing 

methods, researchers should decide feature extraction methods themselves. However, 

the results of selected methods are expected and may be unsuitable to classify human 

actions. By contrast, with neural network methods, researchers have a higher probability 

of finding unexpected and suitable spatial features since the neural networks can learn 

automatically. Therefore, this research adopts neural network methods to extract spatial 

features. 

Moreover, this research adopts two kinds of temporal extraction methods for 

human action sequences: optical flow methods and the LSTM network. Optical flow 
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methods can capture short-term dynamics and LSTM networks can capture long-term 

dynamics. By knowing the temporal dynamics of the sequences, the system can discover 

the discrimination of each human action in the temporal domain. 

2.2 Models of Human Action Recognition 

In recent years, deep learning methods have been widely studied and developed 

for human action recognition. Many researchers [Li17] [Liu17] [Tu18] [Son18] [Jun18] 

[Han18] [Liu18] [Liu19] [Ull19] [De18] [You19] [Hua19] [Ull18] [Cio18] [Du18] 

[Ouy19] [Cha19] have used deep learning methods to develop their human action 

recognition models. Some of these studies use the offline approach [Cha19] [Wan16] 

[Li17] [Ijj14]. 

Wang et al. [Wan16] proposed a spatio-temporal features representation method, 

Joint Trajectory Maps (JTM), to use with the 2D CNN model, AlexNet [Kri12], to 

recognise human actions. JTM features are generated by three Cartesian planes of human 

action trajectories and are sent into an AlexNet [Kri12] model to recognise human 

actions. However, 2D CNN models could not learn temporal information, so the 

information of human action temporal dynamics may be lost. 

Chang et al. [Cha19] proposed a 3D VGG-13 model to recognise human actions. 

The authors replaced the 2D CNNs in the original VGG-13 with 3D CNNs to construct 

the 3D VGG-13 network. 3D CNNs are used to learn the spatial and temporal features, 

but they focus on learning local spatial and temporal features of sequences. Such local 

information may be easily affected by noise and there might be a risk relating to lost 

global information of whole sequences. 

On the other hand, some researchers [Liu17] [You19] [Liu19] [De18] have 

developed their human action recognition system using online approaches. De Geest and 

Tuyelaars [De18] developed a two-stream feedback network to detect and classify 

human actions. The two-stream feedback network consists of an upper stream LSTM 

network, a lower stream LSTM network, and a fully connected layer. The upper stream 

LSTM is used to interpret the input information. The lower stream is used to capture 

temporal information. Moreover, the fully connected layer is used to project the features 

into the action classes. In this study, the intensities of RGB colour model are the input 

information and are first analysed by a CNN model. The results are then sent into the 
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two-stream feedback network to detect and classify human actions. However, this study 

ignored other kinds of features, such as skeletal joints or short-term dynamic features. 

We think each kind of feature can be uniquely analysed for human actions, which would 

combine to increase the accuracy of human action recognition. 

Liu et al. [Liu19] proposed a Multi-Modality Multi-Task RNN to classify and 

forecast human actions. The human action forecast aimed to find the start and end points 

of an action. This network is a two-stream system. The first stream processes the skeletal 

joint information, and the second processes the colour intensity information. These two 

types of information are first processed by using convolutional layers individually. Then, 

the features extracted from the convolutional layers are sent into a deep LSTM network 

with two subtask networks for action classification and forecast, respectively. The deep 

LSTM network alternately stacks three LSTM layers and three fully connected layers, 

with a fully connected layer with softmax at the end. The two subtask networks mainly 

consist of fully connected layers. However, this proposed network ignores the 

uniqueness of each type of input information. Different kinds of input information have 

corresponding suitable networks, such as various stacks of LSTM layers and various 

orders of fully connected layers and LSTM layers. We believe that a tailored network 

for various types of input information can get more meaningful results. 

In summary, this research adopts three types of features to analyse various aspects 

of human actions: colour intensity, short-term dynamic information, and skeletal joints. 

Our proposed system is based on LSTM networks. Compare with 3D CNNs, which have 

weaknesses related to analysing global information, LSTM networks is superior for 

learning global temporal features. LSTM networks treat each frame of the input 

sequence as one input vector and analyse the relationship of all input vectors directly. 

This means that the temporal dependencies of sequences can be enhanced. Additionally, 

this research tries to implement corresponding tailored LSTM networks for different 

characteristics of features. 
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Chapter 3 Online Human Action Recognition 

System 

 

This chapter discusses the online human action recognition system flowchart 

proposed by this study. We briefly introduce the purpose of this research and then 

illustrate and detail the system flowchart. 

3.1 Research Purpose 

This research aims to provide diverse human-robot interaction options for indoor 

smart mobile robots and to overcome the limitations of voice recognition systems and 

touch screen systems. We aim to solve the camera moving and online recognition 

problems. This research develops a system using neural networks due to the recent 

development and robustness of deep learning techniques. That is, this research proposes 

an online human action recognition system using deep learning techniques. By analysing 

the human actions through the proposed system, the actions can be successfully 

recognised and indoor smart mobile robots can give the corresponding reflection to 

users. 

3.2 System Flowchart 

 

 
Figure 3.1 Flowchart of online human action recognition system 
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The system flowchart is shown in Figure 3.1. This flowchart has five stages: 

human detection, human tracking, feature extraction, action classification, and fusion. 

Note that feature extraction involves three types of features, spatial, temporal features 

and structural, and they each have their own classifier. 

After the RGB videos are input into the system, the persons existing in the video 

are detected and tracked. Here, the detected persons are called target persons. Next, three 

kinds of features are extracted from the regions of target persons in each frame. These 

features are then input into their corresponding action classifiers. Finally, the outputs of 

the three action classifiers are fused together to determine the final human action. 

3.2.1 Human Detection 

The system adopts OpenPose, a real-time multi-person 2D human pose estimator 

proposed by Cao et al. [Cao19], to detect humans because it has high speed and accuracy. 

Figure 3.2 compares OpenPose with other human pose estimators proposed in the 

literature, including Alpha-Pose [Fan17], Mask R-CNN [He17], PersonLab [Pap18], and 

METU [Koc18]. In Figure 3.2, the horizontal axis indicates the frames per second (FPS) 

of a video where each frame contains three target persons. The vertical axis indicates the 

accuracy (mean average precision) of the results of the human pose estimators. The 

OpenPose estimator [Cao19] use in this research is highlighted in red triangles. 

 

From Figure 3.2, the OpenPose estimator [Cao19] has the highest FPS, which is 

the most important property of online systems. Although the OpenPose estimator 

[Cao19] sometimes fails to detect all the skeletal joints, this shortcoming does not affect 

the human detection results. Moreover, our system will fill these missing skeletal joints 

 
Figure 3.2 Comparison of human pose estimators [Cao19] 
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to improve the OpenPose estimator [Cao19] in the human tracking stage. 

 

 

The OpenPose estimator [Cao19] can extract 18 human skeletal joints for each 

person. These skeletal joints are two hips, two knees, two ankles, two shoulders, two 

elbows, two wrists, two ears, two eyes, a nose, and a neck, as shown in Figure 3.3 (a). 

An example of the results of joint extraction is shown in Figure 3.3 (b). By using the 

skeletal joints information, the system can enclose and detect the human successfully. 

The human detection results are shown in Figures 3.4 (a) and (b), which respectively 

show examples of complete and incomplete extraction. One can observe that the 

proposed system can detect the human, whether or not skeletal joints are fully extracted. 

3.2.2 Human Tracking 

After the human detection stage, this system uses a Deep Simple Online and 

Realtime Tracking (Deep SORT) method proposed by Wojke et al. [Woj17] to track each 

person in the input video. Some examples of human tracking results are shown in Figure 

3.5, where the symbols shown above the bounding boxes, e.g., P-1, P-2, indicate the 

  
   (a)                               (b) 

Figure 3.3 Human skeletal joints (a) location of joints (b) result of joints extraction 

   
(a)                           (b) 

Figure 3.4 Results of human detection (a) completed joint extraction (b) incomplete 

joint extraction 
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person index of the target person. The green and blue bounding boxes show the results 

of human detection. One can observe that Deep SORT [Woj17] correctly tracks the 

humans. 

 

As mentioned above, the OpenPose estimator [Cao19] can extract 18 human 

skeletal joints for each person. However, the skeletal joints on the head are removed in 

this study because they are not as important for human action detection, and they are 

easily detected incorrectly. Therefore, the 18 skeletal joints are reduced to 13 joints in 

this stage, as shown in Figure 3.6 (a). The detection result is shown in Figure 3.6 (b). 

After the skeletal joint reduction, some missing skeletal joints are filled in at the human 

tracking stage. 

 

Two approaches are used to fill the missing joints. Assume a missing joint 𝑥𝑖 has 

not been detected at frame 𝑖. Then, we have the following cases.  

Case (1): The neck joint, 𝑥𝑖
0 , is found at frame 𝑖 . A missing joint 𝑥𝑖  can be 

predicted by the relative difference between the neck joint and its corresponding joint at 

frame 𝑖 − 1, (𝑥𝑖−1 − 𝑥𝑖−1
0 ), as shown in Equation (1). 

𝑥𝑖 = 𝑥𝑖
0 + (𝑥𝑖−1 − 𝑥𝑖−1

0 ) × 𝑆 (1) 

where 𝑖  indicates frame number, 𝑥𝑖  indicates a missing joint at frame 𝑖 , and 𝑥𝑖−1 

indicates the corresponding detected joints of the missing joint 𝑥𝑖 at frame 𝑖 − 1. Note 

that 𝑥𝑖−1 is detected and not a missing joint. Symbols 𝑥𝑖
0 and 𝑥𝑖−1

0  indicate the neck 

     
Figure 3.5 Results of human tracking 

    
Figure 3.6 Reduced skeletal joints (a) skeletal joints without head joints (b) 

detection result of skeletal joints without head joints 
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joints at frames 𝑖 and 𝑖 − 1, respectively. 

 

In Equation (1), 𝑆  is defined as S =
𝐻𝑖

𝐻𝑖−1
 , where 𝐻𝑖  and 𝐻𝑖−1  are the body 

heights in the frames 𝑖  and 𝑖 − 1 , respectively. The body height is the Euclidean 

distance between the neck joint and the centre between the hip joints, illustrated by the 

red point in Figure 3.7. Thus, 𝑆  can maintain the consistency of the human height 

between frame 𝑖  and 𝑖 − 1.  The camera moving problem can be fixed partially by 

considering the scale change of the same person in two successive frames. 

 

Figure 3.8 shows an example of joint filling. In Figure 3.8 (a), the white points are 

the extracted skeletal joints. However, the right wrist joint has not been successfully 

extracted, as highlighted by a red circle. Figure 3.8 (b) shows the result of joint filling. 

In Figure 3.8 (b), the white circles indicate the original extracted skeletal joints, and the 

blue points indicate the filled joints. Clearly, the missing right wrist joint has been filled, 

as highlighted by a red circle. 

 
Figure 3.7 Schematic diagram of body height 

                    
(a)                              (b) 

Figure 3.8 An example of joint filling (a) a missing joint (b) result of joint filling 
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Case (2): The neck joint, 𝑥𝑖
0, is not found at frame 𝑖. A missing joint 𝑥𝑖 can be 

predicted by the relative difference between its corresponding missing joints at frames 

𝑖 − 1 and 𝑖 − 2, (𝑥𝑖−1 − 𝑥𝑖−2), as follows:  

𝑥𝑖 = 𝑥𝑖−1 + (𝑥𝑖−1 − 𝑥𝑖−2) (2) 

where 𝑖 indicates frame number, 𝑥𝑖 indicates the missing joints at frame 𝑖, and 𝑥𝑖−1, 

and 𝑥𝑖−2 indicate the corresponding detected joints of the missing joints 𝑥𝑖 at frames 

𝑖 − 1  and 𝑖 − 2 , respectively. Note that 𝑥𝑖−1  and 𝑥𝑖−2  are not missing. The 

difference between frame 𝑖 − 1  and 𝑖 − 2 , (𝑥𝑖−1 − 𝑥𝑖−2) , is used to determine the 

moving direction of joints to predict the missing joints at frame 𝑖.  

Similarly to Figure 3.8, Figure 3.9 illustrates an example of joint filling. In this 

example, only three joints are detected successfully, and the others, including the neck 

joint, have not been extracted, as shown in Figure 3.9 (a). Figure 3.9 (b) shows the result 

of joint filling. In this situation, the system may obtain some joint information from the 

current frame; therefore, the degree of similarity between the filled joints and the real 

joints is lower. However, the joint filling step is still helpful for the following human 

action recognition stage.  

 

3.2.3 Feature Extraction 

As mentioned above, three types of features, spatial, temporal and structural, are 

used to distinguish human actions and provide information for the action classification 

stage. The spatial features are extracted from RGB colour images, as shown in Figure 

3.8 (a). Temporal features are extracted from optical flow, as shown in Figure 3.8 (b). 

               
(a)                          (b) 

Figure 3.9 An example of filling the missing joints (a) the missing joints (b) result 

of joint filling 
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Structural features are extracted from human skeletal joints, as shown in Figure 3.8 (c). 

Both spatial and temporal features are extracted by the pre-trained CNN model, 

InceptionV3, which was proposed by Szegedy et al. [Sze16] in 2016. Table 3.1 (a) 

outlines the InceptionV3 architecture, including the input size and patch size of every 

layer. Specifically, the system extracts human action features from the output of the final 

pool layer, which has dimensions of 1 × 1 × 2048. Table 3.1 (b) shows the evaluation 

results comparing InceptionV3 with other networks such as PReLU [He15], BN-

Inception [Iof15], VGGNet [Sim14], and GoogLeNet [Sze15] proposed by Szegedy et 

al. One can observe that InceptionV3 has the lowest error rate for both Top-1 error and 

Top-5 error. Further, InceptionV3 is pre-trained on the ImageNet dataset. 

Note that the system crops and resizes the input frames before extracting spatial 

and temporal features. In the cropping step, the system broadens the bounding box by 

100 pixels in both left and right and 150 pixels in both top and bottom to increase the 

spatial information. 

 

Once the system crops the target persons, the cropped human region is resized into 

500×450 pixels and sent into InceptionV3 [Sze16] for spatial feature extraction. Note 

that the cropped human region contains one person if only one person appears in a frame, 

Table 3.1 InceptionV3 (a) outline of InceptionV3 architecture (b) evaluation results 

comparing InceptionV3 with other models [Sze16] 

(a)                                 (b) 

  

 
(a)                     (b)                     (c) 

Figure 3.10 Input information (a) RGB colour images (b) optical flow (c) human 

skeletal joints 
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but it contains two persons if two persons appear in that frame. The cropped and resized 

human regions are called CR regions hereinafter. The system calculates the Farneback 

optical flow using two successive CR regions, and sends it into another InceptionV3 

[Sze16] to extract temporal features. 

Cropping and resizing the human region can partially fix the camera moving 

problem because cropping can force the system to focus on the target persons, and 

resizing can make the human regions consistent in all frames. Moreover, resizing the 

cropped human regions lets them fit the input shape of InceptionV3 [Sze16]. 

 

Figure 3.11 shows an example of the process to obtain optical flow. Figures 3.11 

(a) and (b) show two successive input frames and their corresponding CR regions, 

respectively. Figure 3.11 (c) shows the optical flow obtained by those successive CR 

regions. The arrows between Figures 3.11 (a), (b) and (c) indicate the processing 

direction. In summary, each frame can extract a 1 × 1 × 2048  dimension spatial 

feature vector and two successive frames can extract a temporal feature vector of the 

same size. Moreover, each input sequence with 𝑁 frames can construct a feature map 

whose size is 𝑁 × 2048. 

Structural features are obtained by calculating the relationship between each pair 

of skeletal joints. As mentioned above, each person has 13 skeletal joints that can be 

extracted. Thus, single human actions and interactive human actions by two persons 

respectively contain 13 and 26 skeletal joints in each frame. However, the system 

preserves sufficient memory space to record 26 skeletal joints in each frame, whether 

 
            (a)                      (b)                  (c) 

Figure 3.11 An example of optical flow calculation (a) two successive input frames 

(b) their corresponding CR regions (c) optical flow 
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the frame has one or two persons appearing. The system applies zero-padding to frames 

containing under 26 skeletal joints for the purpose of preparing information for structural 

feature extraction. 

Next, the system calculates two kinds of distances on pairwise skeletal joints and 

concatenates them to be the structural features. One is the Manhattan distance (1-norm) 

and the other is the Euclidean distance (2-norm). In each frame, the system can calculate 

2 × ∁2
26(= 650)  1-norm features and 1 × ∁2

26(= 325)  2-norm features for pairwise 

skeletal joints. Especially, 1-norm features calculate the location difference of pairwise 

skeletal joints on x-axis and y-axis respectively. Concatenating these features, the system 

can obtain 3 × ∁2
26(= 650 + 325 = 975)  features. Moreover, each input sequence 

with 𝑁 frames can construct a feature map whose size is 𝑁 × 975. 

Figure 3.12 shows two examples of the visualization results of spatial, temporal 

and structural feature maps. The human action in these examples, as shown in Figure 

3.12 (a), is “walk toward to each other”. The two sequences each contain 20 (𝑁 = 20) 

frames. Figures 3.12 (b), (c) and (d) show their corresponding spatial (green), temporal 

(purple), and structural (blue) feature maps, respectively. The horizontal axis indicates 

the dimension of feature vectors and the vertical axis indicates frame numbers. In 

particular, the structural feature maps have a second horizontal axis on the bottom, which 

shows 1-norm features (blue) from 0 to 650 and 2-norm features (red) from 650 to 975. 

The shade of colours in these feature maps indicate the magnitude of the extracted 

features. The corresponding ruler is shown on the right side of the feature maps, 

indicating that smaller values have a lighter colour. In spatial and temporal feature maps 

(see Figures 3.12 (b) and (c)), if the values are greater than one, they are represented in 

red. 

Figure 3.13 shows another two examples of the visualization results of spatial, 

temporal and structural feature maps, this time for the drink in stand position, as shown 

in Figure 3.13 (a). Similarly to above, Figures 3.13 (b), (c) and (d) show the 

corresponding spatial (green), temporal (purple) and structural (blue) feature maps, 

respectively. 

From these feature maps, one can observe that similar human actions have similar 

values of features and vice versa. This kind of characteristic can lead the classifiers to 

more easily obtain successful classification results. 

The structural feature maps contain information about the relationship between 
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skeletal joints for both single and interactive actions. For example, in the feature maps 

of the action “walk toward each other” shown in Figure 3.12 (d), the values of the 

features are slowly decreasing from time step 0 to 20. This kind of variation means that 

the skeletal joints are getting closer, which matches the action. By contrast, in the feature 

maps of the action “drink in stand position” shown in Figure 3.13 (d), the values of the 

features barely change from time step 0 to 20. This kind of variation means that the 

skeletal joints only minorly change, which matches the action. 

 

  

                                         
                  (a)                              (b) 

        

        
                  (c)                              (d) 

Figure 3.12 Two examples of feature map visualization (a) human actions (walk 

toward each other) (b) corresponding spatial feature maps (c) temporal feature maps 

(d) structural feature maps 
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3.2.4 Action Classification 

This research adopts LSTM networks to classify human action. Each type of 

feature can be well classified by an appropriate and targeted network. Therefore, twelve 

kinds of LSTM networks are implemented to find appropriate ones for the three types 

of features. A new proposed temporal enhancement LSTM (TE-LSTM) is among the 

  

  
(a)                             (b) 

      

       
(c)                             (d) 

Figure 3.13 Examples of feature map visualisation (a) human actions (drink in stand 

position) (b) corresponding spatial feature maps (c) temporal feature maps (d) 

structural feature maps 
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implemented twelve networks. This subsection gives a brief overview of the LSTM 

networks and describes the LSTM models. 

(1) Overview of the LSTM Network 

The LSTM network improves on the RNN. As mentioned above, the RNN suffers 

from vanishing gradients in the training stage, and the LSTM network solves this 

problem. 

The LSTM network consists of at least one LSTM layer, and each LSTM layer 

contains many LSTM cells. An LSTM cell includes a forget gate, an input gate, and an 

output gate, as shown in Figure 3.14. These three gates regulate, store, and add or remove 

the information at each cell. The input gate decides what new information should be 

added to cell state. The forget gate decides which cell states should be retained or 

removed. The output gate decides the final output vector based on the processed cell 

state. An LSTM cell is shown in Figure 3.14. 

 

Given an input vector, 𝑥𝑡, at time step 𝑡 and a hidden state vector, ℎ𝑡−1, at 𝑡 −

1, the output values of forget gate (𝑓𝑡), input gate (𝑖𝑡), output gate (𝑜𝑡), and memory cell 

candidate (𝑎𝑡), as shown in Figure 3.14, can be obtained by the following equations. 

𝑓𝑡 = 𝜎𝑠(𝑤𝑓𝑥𝑡 + 𝑢𝑓ℎ𝑡−1 + 𝑏𝑓). (5) 

𝑖𝑡 = 𝜎𝑠(𝑤𝑖𝑥𝑡 + 𝑢𝑖ℎ𝑡−1 + 𝑏𝑖). (6) 

𝑜𝑡 = 𝜎𝑠(𝑤𝑜𝑥𝑡 + 𝑢𝑜ℎ𝑡−1 + 𝑏𝑜). (7) 

𝑎𝑡 = 𝜎ℎ(𝑤𝑐𝑥𝑡 + 𝑢𝑐ℎ𝑡−1 + 𝑏𝑐). (8) 

where 𝑤𝑓  , 𝑤𝑖 , 𝑤𝑜 , 𝑤𝑐 , 𝑢𝑓 , 𝑢𝑖 , 𝑢𝑜 , and 𝑢𝑐 , indicate parameter matrices. The 

symbols 𝑏𝑓  , 𝑏𝑖 , 𝑏𝑜 , and 𝑏𝑐 , are bias vectors, and 𝜎𝑠  and 𝜎ℎ  indicate the sigmoid 

 
Figure 3.14 An LSTM cell 
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function and the tangent function, respectively. 

The cell state vector, 𝑐𝑡−1 , at 𝑡 − 1  can be regarded as the memory of the 

previous time step and can be used to make the connection with the cell state vector, 𝑐𝑡, 

at 𝑡. Then, 𝑐𝑡 can be calculated by  

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑎𝑡. (9) 

Finally, the hidden state vector, ℎ𝑡, at time step 𝑡 is defined as 

ℎ𝑡 = 𝑜𝑡 ∗ 𝜎ℎ(𝑐𝑡). (10) 

where the operator ∗ denotes the element-wise product. 

(2) LSTM Networks 

Twelve kinds of LSTM networks, including LSTM networks with various layers, 

BiLSTM networks with various layers and the proposed TE-LSTM networks, are 

implemented to find suitable ones for the three types of features. Table 3.2 shows the 

structures of three LSTM networks with one, two and three layers, respectively. 

Different types of features can be input to train LSTM models. In Table 3.2, 1LSp, 1LTe, 

and 1LSt indicate the structures of the LSTM networks with one-layer LSTM that are 

trained by spatial features, temporal features, and structural features, respectively. 

Similarly, 2/3LSp, 2/3LTe, and 2/3LSt indicate the structures of the LSTM networks with 

two/three-layer LSTM trained by spatial features, temporal features, and structural 

features, respectively. 

LSTM𝑖, 𝑖 = 1,2,3,4, as shown in Table 3.2, indicate the hidden state units of the 

ith LSTM layers, and FC𝑗 , 𝑗 = 1,2 , indicates the neuron numbers of full-connected 

layers. The neuron number of FC2, 16, is equal to the number of human action classes. 

 

Table 3.3 shows the structures of four BiLSTM networks with one, two, three, and 

four layers. As in Table 3.2, 1/2/3/4BSp, 1/2/3/4BTe and 1/2/3/4BSt indicate the structures 

of the BiLSTM networks with one/two/three/four-layer BiLSTM which are trained by 

spatial features, temporal features, and structural features, respectively. Further, 

Table 3.2 Structures of LSTM networks 

Structure 
1-Layer LSTM 2-Layer LSTM 3-Layer LSTM 

1LSp 1LTe 1LSt 2LSp 2LTe 2LSt 3LSp 3LTe 3LSt 

LSTM1 1024 512 1024 1024 512 1024 1024 512 1024 

LSTM2  512 256 512 1024 512 1024 

LSTM3  512 256 512 

FC1  128 128 128 128 128 128 128 128 128 

FC2  16 16 16 16 16 16 16 16 16 
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BiLSTM𝑖, 𝑖 = 1,2,3,4, indicates the hidden state units of the BiLSTM layers. 

 

Additionally, one BiLSTM networks consists of two LSTM layers to process input 

sequences in two directions. One processes the input sequence from the first frame to 

the last frame (forward) along the time axis, and the other processes it from the last frame 

to the first frame (backward). In BiLSTM networks, the relationships of temporal 

variations can be analysed in both forward and backward directions. In summary, 

BiLSTM networks may capture better temporal dependencies than LSTM networks in 

some cases. 

This study implemented five types of temporal enhancement (TE)-LSTM 

networks: TE-LSTM1, TE-LSTM2, TE-LSTM3, TE-LSTM4 and TE-LSTM5. These all 

have the same structure, a general TE-LSTM structure, but some of the layers use 

different LSTM models. 

 

Table 3.3 Structures of BiLSTM networks 

Structure 
1-Layer BiLSTM 2-Layer BiLSTM 3-Layer BiLSTM 4-Layer BiLSTM 
1BSp 1BTe 1BSt 2BSp 2BTe 2BSt 3BSp 3BTe 3BSt 4BSp 4BTe 4BSt 

BiLSTM1  2048 2048 1024 2048 2048 1024 2048 2048 1024 2048 2048 1024 

BiLSTM2  1024 1024 512 2048 2048 1024 2048 2048 1024 

BiLSTM3   1024 1024 512 1024 1024 512 

BiLSTM4  512 512 256 

FC1 128 128 128 128 128 128 128 128 128 128 128 128 

FC2 16 16 16 16 16 16 16 16 16 16 16 16 

 

 
Figure 3.15 Network of a general TE-LSTM 
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A general TE-LSTM network comprises a TE network and a deep LSTM network, 

as shown in Figure 3.15. The TE network consists of an LSTM module and two fully 

connected layers. The deep LSTM network consists of two LSTM modules and three 

fully connected layers. Furthermore, the TE network can analyse the sequences to find 

their important parts and then pay more attention to those parts. By going through the 

TE network, the temporal information of sequences can be enhanced. The deep LSTM 

network then analyses the enhanced temporal sequences and classifies human actions. 

Noted that the LSTM modules can be either LSTM network or BiLSTM network. 

In the TE network, the feature sequences are first passed through the LSTM 

module and two fully connected layers to analyse the input sequences. Next, the 

analysed sequences are normalised using the softmax normalisation method. Finally, the 

normalisation outputs are multiplied by the feature sequences using element-wise 

product operation. In the deep LSTM network, the product result is passed through two 

LSTM modules and three fully connected layers sequentially to classify the human 

actions. 

 

Tables 3.4, 3.5 and 3.6 show the structures of these five TE-LSTM networks. 

Similarly to Table 3.2, T1/2/3/4/5Sp, T1/2/3/4/5Te, and T1/2/3/4/5St indicate the structures 

of the TE-LSTM1/2/3/4/5 networks trained by spatial features, temporal features and 

structural features, respectively. 

In Tables 3.4, 3.5 and 3.6, LSTM𝑖
𝑛, 𝑖 = 1,2,3, 𝑛 = 1,2,3,4, and BiLSTM𝑖

𝑛, 𝑖 =

1,2,3, 𝑛 = 3,4,5 indicate the hidden state units of the ith LSTM/BiLSTM layers of the 

Table 3.4 Structure of TE-LSTM networks (a) structure of TE-LSTM1 (b) structure 

of TE-LSTM2 

(a)                                  (b) 

Structure 
TE-LSTM1 

T1Sp T1Te T1St 

LSTM1
1

 2048 2048 975 

FC1
1 2048 2048 975 

FC2
1 2048 2048 975 

FVN    

⨀     

LSTM2
1 512 512 512 

LSTM3
1 256 256 256 

FC3
1 128 128 128 

FC4
1 128 128 128 

FC5
1 16 16 16 

 

Structure 
TE-LSTM2 

T2Sp T2Te T2St 

LSTM1
2

 2048 2048 975 

FC1
2 2048 2048 975 

FC2
2 2048 2048 975 

FVN    

⨀     

LSTM2
2 512 512 512 

LSTM3
2 256 256 256 

FC3
2 128 128 128 

FC4
2 128 128 128 

FC5
2 16 16 16 
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nth TE-LSTM networks, respectively. Here, FC𝑗
𝑛 , 𝑗 = 1,2,3,4,5 , 𝑛 = 1,2,3,4,5 , 

indicates the neuron numbers of fully-connected layers. The neuron number of FC5
𝑛, 16, 

is equal to the number of human action classes. Moreover, FVN and ⨀ respectively 

indicate whether the features vector normalization, softmax normalization, and the 

element-wise product has been applied. A tick indicates the technique has been applied, 

and a cross indicates otherwise. 

 

 

3.2.5 Fusion 

Let the outputs of the three LSTM classifiers trained by spatial features, temporal 

features, and structural features at time 𝑡 be 𝑣𝑡
𝑆𝑝

, 𝑣𝑡
𝑇𝑒 , and 𝑣𝑡

𝑆𝑡 respectively. A fusion 

Table 3.5 Structure of TE-LSTM networks (a) structure of TE-LSTM3 (b) structure 

of TE-LSTM4 

(a) (b) 

Structure 
TE-LSTM3 

T3Sp T3Te T3St 

BiLSTM1
3

 4096 4096 1950 

FC1
3 2048 2048 975 

FC2
3 2048 2048 975 

FVN    

⨀     

LSTM1
3 512 512 512 

LSTM2
3 256 256 256 

FC3
3 128 128 128 

FC4
3 128 128 128 

FC5
3 16 16 16 

 

Structure 
TE-LSTM4 

T4Sp T4Te T4St 

LSTM1
4

 2048 2048 975 

FC1
4 2048 2048 975 

FC2
4 2048 2048 975 

FVN    

⨀     

BiLSTM1
4 1024 1024 1024 

BiLSTM2
4 512 512 512 

FC3
4 128 128 128 

FC4
4 128 128 128 

FC5
4 16 16 16 

 

Table 3.6 Structure of TE-LSTM5 

Structure 
TE-LSTM5 

T5Sp T5Te T5St 

BiLSTM1
5

 4096 4096 1950 

FC1
5 2048 2048 975 

FC2
5 2048 2048 975 

FVN    

⨀     

BiLSTM2
5 1024 1024 1024 

BiLSTM3
5 512 512 512 

FC3
5 128 128 128 

FC4
5 128 128 128 

FC5
5 16 16 16 
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method should be used to integrate these three outputs to determine the fusion action 

class 𝑐𝑡
𝑓𝑢

 . Noted that each of 𝑣𝑡
𝑆𝑝

 , 𝑣𝑡
𝑇𝑒  , and 𝑣𝑡

𝑆𝑡  contains 16 probability values 

corresponding to the 16 action classes and the probability values are between 0 to 1. 

Here, 𝑜𝑡
𝑆𝑝

, 𝑜𝑡
𝑇𝑒, and 𝑜𝑡

𝑆𝑡  indicate the highest probability values of 𝑣𝑡
𝑆𝑝

, 𝑣𝑡
𝑇𝑒 , and 𝑣𝑡

𝑆𝑡  

at time 𝑡, and their corresponding action classes are 𝑐𝑡
𝑆𝑝

, 𝑐𝑡
𝑇𝑒, and 𝑐𝑡

𝑆𝑡, respectively. 

In this study, two kinds of fusion method are implemented and compared with each 

other to find the characteristics of fusion. Both methods consider the output action class 

from the previous time, 𝑐𝑡−1
𝑓𝑢

, to classify the human action at the current time. 

In the first fusion method, the output classes of the three types of features, 𝑐𝑡
𝑆𝑝

, 

𝑐𝑡
𝑇𝑒, and 𝑐𝑡

𝑆𝑡, have their corresponding highest probability values 𝑜𝑡
𝑆𝑝

, 𝑜𝑡
𝑇𝑒, and 𝑜𝑡

𝑆𝑡 , 

respectively. The fusion action class 𝑐𝑡
𝑓𝑢

 is assigned by the class with the maximum 

probability values among 𝑜𝑡
𝑆𝑝

 , 𝑜𝑡
𝑇𝑒 , and 𝑜𝑡

𝑆𝑡  , if 𝑐𝑡
𝑆𝑝

 , 𝑐𝑡
𝑇𝑒 , and 𝑐𝑡

𝑆𝑡  are all different 

from 𝑐𝑡−1
𝑓𝑢

. For example, consider the case where 𝑐𝑡
𝑆𝑝

, 𝑐𝑡
𝑇𝑒, and 𝑐𝑡

𝑆𝑡 are different from 

𝑐𝑡−1
𝑓𝑢

, and 𝑚𝑎𝑥[𝑜𝑡
𝑆𝑝

, 𝑜𝑡
𝑇𝑒, 𝑜𝑡

𝑆𝑡] = 𝑜𝑡
𝑆𝑝

. Then, 𝑐𝑡
𝑓

= 𝑐𝑡
𝑆𝑝

. Otherwise, 𝑐𝑡
𝑓𝑢

 is assigned to 

𝑐𝑡−1
𝑓𝑢

. 

In the second fusion method, the output class can be determined by the following 

equation. 

𝑐𝑡
𝑓𝑢

= {
𝑐𝑡

𝑆𝑝
   if 𝑐𝑡−1

𝑓𝑢
≠ 𝑐𝑡

𝑆𝑝
 and 𝑐𝑡−1

𝑓𝑢
≠ 𝑐𝑡

𝑇𝑒 and 𝑐𝑡−1
𝑓𝑢

≠ 𝑐𝑡
𝑆𝑡

𝑐𝑡−1
𝑓𝑢

                 otherwise                
          (11) 

Experimental results show that the LSTM classifier trained by spatial features has 

higher recognition rates compared with those classifiers trained by temporal features and 

structural features, respectively. This suggests that the action class 𝑐𝑡
𝑆𝑝

 is sometimes 

more trustworthy than 𝑐𝑡
𝑇𝑒 and 𝑐𝑡

𝑆𝑡. Therefore, in the second fusion method, the fusion 

action class 𝑐𝑡
𝑓𝑢

 is assigned to 𝑐𝑡
𝑆𝑝

 if 𝑐𝑡
𝑆𝑝

, 𝑐𝑡
𝑇𝑒, and 𝑐𝑡

𝑆𝑡 are all different from 𝑐𝑡−1
𝑓𝑢

. 

Otherwise, 𝑐𝑡
𝑓𝑢

 is assigned to 𝑐𝑡−1
𝑓𝑢

. 
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Chapter 4 Experimental Results 

 

This chapter describes the research environment and equipment and provides 

details about the CVIU Moving Camera Human Action Dataset. The action 

classification results for the three types of features individually and the fusion results of 

action classification are presented. We also show the online human action recognition 

results of a multi-action sequence. 

4.1 Research Environment and Equipment Setup 

The focal point of this research is to recognise human actions under moving 

camera circumstances. This research simulates the moving camera circumstances by 

moving a four-wheel movable cart with a Kinect v2 sensor on it in a clean background 

classroom. The cart is 76.5 cm high and 45 cm wide. The CVIU Moving Camera Human 

Action dataset was built with this environment and equipment. This research was 

implemented in Python 3.7 using Keras 2.3, TensorFlow 1.15 and OpenCV4.1 run on 

NVIDIA GeForce GTX 1080 Ti on Ubuntu 16.04. 

4.2 CVIU Moving Camera Human Action Dataset 

We established an M-Video dataset called the CVIU Moving Camera Human 

Action dataset (CVIU dataset). The CVIU dataset contains 3,646 human action 

sequences (252,048 frames), including 11 types of single and 5 types of interactive 

human actions. The types of single human actions include drink in sit and stand 

positions, eat in sit and stand positions, play with a phone, sit down, stand up, use a 

laptop, walk straight, walk horizontal, and read. The types of interactive human actions 

include kick, hug, carry object, walk toward each other, and walk away from each other. 

This dataset was recorded from three perspectives and each human action 

sequence was recorded while the camera was slowly moving towards the target persons. 

The first recording perspective, D1, had the Kinect v2 sensor facing the target person. 

The second recording perspective, D2, had the Kinect v2 sensor on the right side of the 

target person with a 45° angle. The third recording perspective, D3, has the Kinect v2 
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sensor on the left side of the target person with a 45°  angle. Figure 4.1 provides a 

schematic diagram of the recording dataset including the three recording perspectives, 

and the recording environment and equipment. Figure 4.2 shows three recording 

perspectives for a human action sequence, “carry object”. 

 

 

4.3 Action Classification Results of Three Types of Features 

This research adopts the CVIU dataset to train and test the networks. In the training 

stage, action sequences are subsampled and extracted three types of features. And, these 

three types of features are individually fed into the LSTM networks for training. In the 

 
Figure 4.1 Schematic diagram of recording dataset 

    
(a) D1                            (b) D2 

  
(c) D3 

Figure 4.2 Three recording perspectives for “carry object” (a) D1, (b) D2, (c) D3 
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testing stage, full action sequences are classified by the system in an online manner. 

Thus, the system outputs an action classification result by feeding 20 continuous frames. 

However, for the next 20 frames, the system inputs the last 10 frames from the previous 

20 frames and the next continuous 10 frames. That is, the system outputs the first action 

classification result after feeding 20 frames continuously. Then, the system outputs a 

result every 10 frames. This kind of method can speed up the system without affecting 

the recognition of human action in the sequences. Note that the training and testing data 

are distinct. This subsection describes frame sampling number selection, preprocessing, 

and the action classification results of the CVIU dataset.  

(1) Decision of Frame Sampling Number 

This research uses the CVIU dataset for frame sampling number decision, which 

implements a one-layer LSTM network, to find a suitable frame sampling number. We 

chose six classes of human action from the CVIU dataset, three single and three 

interactive classes. The single human actions are use a laptop, drink in stand position, 

and eat in stand position. The interactive human actions are walk toward to each other, 

kick, and carry object. We used 240 sequences for training (40 for each action), 60 

sequences for validating (10 for each actions), and 180 sequences for testing (30 for each 

action). 

 

The decision results of frame sampling number are shown in Table 4.1, where 

1LSp, 1LTe, and 1LSt indicate a one-layer LSTM network trained by spatial features, 

temporal features, and structural features, respectively. Frame Sampling 10/15/20 

respectively indicate the number of frame sampling as 10/15/20 frames. The recognition 

rates of F1-measurements are provided for single actions (listed in the blue region) and 

interactive actions (listed in the orange region). Avg refers to the average recognition 

rates of F1-measurement of each type of features with the corresponding number of 

frame sampling. 

Table 4.1 Decision results of frame sampling number 

 Frame Sampling 10 Frame Sampling 15 Frame Sampling 20 

1LSp 1LTe 1LSt 1LSp 1LTe 1LSt 1LSp 1LTe 1LSt 
Use a laptop 1.000 0.789 0.842 0.984 0.732 0.692 0.984 0.841 0.596 

Drink in stand position 0.815 0.261 0.238 0.929 0.392 0.103 0.909 0.523 0.433 

Eat in stand position 0.822 0.536 0.565 0.892 0.426 0.577 0.892 0.311 0.701 

Walk toward each other 0.696 0.061 0.063 0.667 0.121 0.300 0.947 0.278 0.333 

Kick 0.866 0.532 0.454 0.822 0.624 0.522 0.968 0.615 0.483 

Carry object 1.000 0.691 0.600 1.000 0.852 0.540 1.000 0.866 0.585 

Avg 0.872 0.533 0.522 0.889 0.578 0.494 0.950 0.617 0.544 

Network F1-Measure 

Action
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From Table 4.1, the average accuracy of frame sampling 20 had better recognition 

rates than the other options. This research also found that most actions can be finished 

within 20 frames. Therefore, the following experiments use subsampled human actions 

sequences to 20 frames to train the networks. 

(2) Preprocessing 

Preprocessing was implemented to determine whether it helps the system increase 

recognition rates. Preprocessing includes cropping and resizing the frames, and filling 

the skeletal joints. The number of training, testing, and action classes are the same as for 

the frame sampling selection. Table 4.2 shows the results of preprocessing. Similarly to 

Table 4.1, 1/2LSp
p

, 1/2LTe
p

, and 1/2LSt
p

 indicate a one/two-layer LSTM network trained 

by the processed spatial features, temporal features, and structural features, respectively. 

Here, 1/2LSp
w ,1/2LTe

w , and 1/2LSt
w  indicate networks trained without using preprocessing. 

 

From Table 4.2, the average accuracies with preprocessing were higher than 

without preprocessing. This proves that preprocessing does help the system to increase 

recognition rates. Thus, the following experiments all implemented preprocessing. 

(3) Action Classification Results of the CVIU Dataset 

This experiment uses all 16 human action classes in the CVIU dataset. Training 

data included 1696 sequences, evaluation data included 350 sequences and testing data 

included 1600 sequences. Table 4.3 lists the total human action sequences used for action 

classification experiments. Training, Validation, and Testing indicate the training data, 

validation data, and testing data, respectively. The human actions are represented by A01 

to A16 with the amount of each sequence shown. Note that the actions “hug” and “kick” 

(highlighted in red) have more training data than the other actions. This is because these 

Table 4.2 Results of preprocessing using 1/2-layer LSTM networks 

 Without Preprocessing Preprocessing 

1LSp
w  1LTe

w  1LSt
w  2LSp

w  2LTe
w  2LSt

w  1LSp
p

 1LTe
p

 1LSt
p

 2LSp
p

 2LTe
p

 2LSt
p

 

Use laptop 0.667 0.267 0.375 0.578 0.238 0.270 1.000 0.769 0.844 1.000 0.682 0.235 

Drink in stand 

position 
0.000 0.000 0.000 0.057 0.327 0.286 0.951 0.438 0.000 0.967 0.264 0.607 

Eat in stand 

position 
0.506 0.431 0.299 0.528 0.486 0.514 1.000 0.158 0.624 1.000 0.108 0.105 

Walk toward each 

other 
0.710 0.350 0.093 0.333 0.716 0.300 0.868 0.537 0.538 0.537 0.500 0.333 

Kick 0.776 0.526 0.125 0.674 0.659 0.558 0.923 0.806 0.596 0.769 0.692 0.619 

Carry object 0.594 0.469 0.000 0.044 0.468 0.520 0.984 0.896 0.467 0.984 0.844 0.700 

Avg 0.588 0.400 0.227 0.45 0.516 0.450 0.955 0.650 0.567 0.889 0.572 0.483 

 

Networks F1- 

Measur

e 
Actions 
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two actions are more complicated. For example, in the action “kick”, a person can kick 

with their left or right leg. For the action “hug”, the person’s hands can be in various 

positions. 

 

As mentioned above, each type of feature has a proper LSTM network and we 

tested twelve types of LSTM networks trained by the three feature types. To evaluate 

which networks are appropriate for each feature type, we used an evaluation criteria, 𝑅𝑟 

as shown in Equation (12), to evaluate the networks. 

Assume the system obtains 𝑛 output classification results in a sequence, that is a 

set of action output probabilities, X = {𝑥1, 𝑥2, … , 𝑥𝑛}. A threshold, 𝜃, can filter out the 

probabilities which are low while retaining the set of action output probabilities which 

are higher than the threshold, X′ = {𝑥𝑖 > 𝜃 | 𝑥𝑖 ∈ X}, ∀𝑖 ∈ 𝑛. Each kind of network 

has a particular threshold value. The threshold values of spatial features, temporal 

features, and structural features are 80%, 60%, and 70%, respectively. 

𝑅𝑟 =
𝑁𝑐

𝑁𝑔
  (12) 

where 𝑁𝑔  indicates the cardinality of X′ , 𝑁𝑔 = |X′| . Further, 𝑁𝑐  indicates the 

number of correct classified human actions within X′ , 𝑁𝑐 = |{𝑥𝑗: 𝐶𝑜𝑟𝑎 | 𝑥𝑗 ∈ X′}| , 

∀𝑗 ∈ 𝑛, where 𝐶𝑜𝑟𝑎 indicates a correctly classified human action. 

Table 4.3 The total amounts of human action sequences used for action classification 

 
Training Validation Testing 

A01: Drink in sit position 89 22 100 

A02: Drink in stand position 89 22 100 

A03: Eat in sit position 88 22 100 

A04: Eat in stand position 91 22 100 

A05: Play with a phone 90 22 100 

A06: Read 91 21 100 

A07: Sit 93 22 100 

A08: Stand 92 21 100 

A09: Use a laptop 90 22 100 

A10: Walk horizontal 95 22 100 

A11: Walk straight 89 22 100 

A12: Carry object 96 22 100 

A13: Walk away from each other 94 22 100 

A14: Walk toward each other 90 22 100 

A15: Hug 223 22 100 

A16: Kick 196 22 100 

Total 1696 350 1600 

 

Data Types Sequences 

Actions 
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Tables 4.4, 4.5 and 4.6 show the action classification results using spatial features, 

temporal feature, and structural features, respectively. Here, Ns and Rr indicate networks 

and recognition rates, respectively, and 1/2/3LSp/Te/St, 1/2/3/4BSp/Te/St, T1/2/3/4/5Sp/Te/St 

are the aforementioned networks trained by spatial, temporal, and structural features, 

respectively. The training time of these networks are shown in Table 4.7. Ns and Ttrn 

indicate networks and training time respectively. Time is measured in the unit of hour. 

Note that A01 to A11 are the single actions, and A12 to A16 are the interactive actions. 

Avg is the average Rr of each type of feature with the corresponding networks and feature 

types. The unit is percentage (%). 

 

For spatial features, the highest average recognition rates of LSTM, BiLSTM, and 

TE-LSTM networks were respectively achieved by the one-layer LSTM network 

(96.18%), two-layer BiLSTM network (96.64%), and TE-LSTM network with type 2 

(96.44%), as shown in Table 4.4. The two-layer BiLSTM network had the highest 

recognition rate among all the networks, so we choose it to classify human actions that 

Table 4.4 Action classification results of spatial features 
 

1LSp 2LSp 3LSp 1BSp 2BSp 3BSp 4BSp T1Sp T2Sp T3Sp T4Sp T5Sp 

A01 98.65 99.32 71.00 99.21 97.96 98.30 98.98 0.00 98.72 0.00 0.00 0.00 

A02 99.38 99.08 93.79 98.73 94.34 96.65 96.05 0.00 99.42 0.00 76.46 68.62 

A03 95.79 92.75 64.00 95.18 97.43 96.15 98.62 0.00 95.56 0.00 0.00 0.00 

A04 98.64 93.24 55.00 96.89 97.93 98.45 97.87 0.00 98.21 0.00 85.13 33.65 

A05 94.22 97.00 7.00 85.00 96.00 94.57 94.40 0.00 95.00 0.00 0.00 0.00 

A06 99.41 98.88 11.00 100.00 98.89 98.32 99.37 0.00 99.07 0.00 0.00 0.00 

A07 93.37 91.66 93.00 95.67 95.31 92.04 92.55 0.00 95.98 0.00 93.80 0.00 

A08 85.32 85.64 34.55 81.25 81.82 81.00 83.93 0.00 84.37 0.00 0.00 0.00 

A09 100.00 99.88 98.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00 0.00 98.00 

A10 95.66 97.73 98.00 96.40 97.41 98.20 97.20 10.00 99.27 0.00 89.35 67.57 

A11 95.06 95.93 99.00 99.47 96.88 95.75 94.89 0.00 97.15 0.00 79.27 14.33 

A12 99.21 99.20 100.00 100.00 99.88 99.28 99.55 63.08 99.64 0.00 47.84 97.32 

A13 95.72 97.14 90.80 98.50 97.82 95.67 96.27 0.00 95.88 0.00 81.07 98.00 

A14 93.13 86.48 95.33 93.15 94.51 91.32 91.83 0.00 90.13 0.00 63.37 33.33 

A15 98.00 97.89 91.00 100.00 100.00 100.00 100.00 84.61 98.00 85.11 96.02 89.73 

A16 97.27 96.00 73.67 100.00 100.00 100.00 100.00 85.40 96.67 39.40 94.83 97.17 

Avg 96.18 95.49 73.45 96.21 96.64 95.98 96.34 15.19 96.44 7.78 50.45 43.61 

 

Ns 
Rr 

Actions 
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are analysed using spatial features. 

For temporal features, the highest average recognition rates of LSTM, BiLSTM, 

and TE-LSTM networks were respectively achieved by the one-layer LSTM network 

(71.58%), three-layer BiLSTM network (81.87%), and TE-LSTM network with type 2 

(75.16%), shown in Table 4.5. The recognition rate of the three-layer BiLSTM network 

had the best results with a recognition rate 10.29% higher than that of the one-layer 

LSTM network. Thus, we choose the three-layer BiLSTM network to classify human 

actions that are analysed using temporal features. 

 

For structural features, the highest average recognition rates of LSTM, BiLSTM, 

and TE-LSTM networks were respectively achieved by the two-layer LSTM network 

(59.63%), three-layer BiLSTM network (60.35%), and TE-LSTM network with type 5 

(68.10%), as shown in Table 4.6. The recognition rate of the TE-LSTM network with 

type 5 was 8.47% higher than that of the two-layer LSTM. Thus, we choose the TE-

LSTM network with type 5 to classify human actions that are analysed using structural 

Table 4.5 Action classification results of temporal features 
 

1LTe 2LTe 3LTe 1BTe 2BTe 3BTe 4BTe T1Te T2Te T3Te T4Te T5Te 

A01 33.33 9.67 7.00 51.96 54.20 72.16 38.85 0.00 44.65 0.00 0.00 0.00 

A02 80.33 72.62 49.20 92.13 84.48 94.43 79.08 0.00 85.48 0.00 49.81 0.00 

A03 49.61 50.67 35.00 63.60 57.96 65.41 53.98 0.00 58.39 0.00 0.00 0.00 

A04 64.22 70.04 58.33 58.98 76.32 71.84 79.63 0.00 61.80 0.00 67.52 0.00 

A05 77.97 65.40 17.00 86.93 65.48 77.55 64.72 0.00 84.48 0.00 0.00 0.00 

A06 21.42 46.08 6.00 51.08 87.71 77.08 77.52 0.00 63.53 0.00 0.00 0.00 

A07 88.04 93.29 86.25 87.43 78.35 80.84 86.47 0.00 92.21 0.00 0.00 65.00 

A08 71.49 70.65 47.63 53.87 61.73 71.76 52.61 0.00 67.74 0.00 0.00 0.00 

A09 89.90 99.49 88.00 99.36 99.08 98.93 99.00 0.00 97.41 0.00 0.00 0.00 

A10 96.97 94.58 94.00 97.15 97.72 96.53 94.34 0.00 94.87 0.00 73.39 95.61 

A11 85.90 90.01 73.32 88.59 86.07 88.73 91.57 0.00 62.55 0.00 85.83 0.00 

A12 70.75 66.07 76.53 74.79 79.53 83.48 38.07 0.00 72.48 0.00 20.18 48.62 

A13 44.97 34.57 39.68 51.45 59.42 50.13 48.12 0.00 46.53 0.00 39.68 13.10 

A14 84.88 86.69 89.34 79.34 82.41 82.27 82.33 0.00 77.95 0.00 33.14 35.77 

A15 95.69 93.21 86.86 99.88 98.12 98.73 100.00 0.00 95.79 92.79 71.68 88.61 

A16 89.83 93.67 84.67 97.67 97.67 100.00 70.55 67.00 96.67 41.09 75.56 93.07 

Avg 71.58 71.04 58.68 77.14 79.14 81.87 72.30 4.19 75.16 8.37 32.30 27.49 

 

Ns 
Rr 

Actions 
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features. Additionally, the TE-LSTM network with type 2 had the lowest recognition 

rate among other TE-LSTM networks, proving that the TE network enhances the 

temporal information of sequences. 

 

 

Table 4.6 Action classification results of structural features 
 

1LSt 2LSt 3LSt 1BSt 2BSt 3BSt 4BSt T1St T2St T3St T4St T5St 

A01 0.00 35.72 23.33 0.00 30.50 50.50 2.00 73.00 61.04 55.52 55.84 81.79 

A02 0.00 60.65 82.79 0.00 83.35 80.53 48.70 83.25 73.94 72.56 92.28 81.79 

A03 0.00 2.25 4.00 0.00 1.00 0.00 0.00 6.08 2.25 0.00 59.37 15.48 

A04 0.00 68.09 53.39 0.00 43.57 84.10 19.00 75.10 58.03 62.58 52.91 92.41 

A05 0.00 66.38 57.08 0.00 36.47 39.00 26.00 64.67 71.40 92.80 38.92 68.38 

A06 0.00 1.00 1.00 0.00 1.50 1.00 0.00 3.40 0.00 0.00 35.08 0.00 

A07 0.00 85.18 92.14 0.00 94.95 87.83 68.77 90.17 87.79 65.74 93.01 84.17 

A08 0.00 46.82 67.05 0.00 60.68 56.83 35.50 75.47 55.44 46.42 57.68 42.23 

A09 0.00 59.46 4.00 0.00 29.00 10.00 0.00 17.22 29.36 32.92 63.87 55.00 

A10 4.50 74.68 75.13 73.48 80.33 92.19 90.06 85.71 69.95 81.75 91.24 89.45 

A11 0.00 78.00 37.86 0.00 52.23 60.17 84.25 90.50 42.65 71.85 64.75 91.65 

A12 33.85 52.72 44.50 35.44 47.24 67.43 57.23 49.62 58.64 50.52 46.88 67.16 

A13 51.60 62.47 68.10 56.07 58.57 72.50 63.83 89.98 67.42 52.57 63.35 63.58 

A14 27.06 69.47 75.39 66.84 70.20 75.70 74.62 71.73 68.79 65.60 69.33 71.22 

A15 72.78 93.66 95.24 82.73 93.95 89.27 94.25 90.01 91.08 88.88 90.08 94.20 

A16 87.47 95.95 95.23 89.17 95.00 98.50 96.50 98.00 97.17 99.33 97.90 91.17 

Avg 17.33 59.53 54.76 25.23 54.91 60.35 47.54 66.49 58.43 58.69 67.03 68.10 

 

Ns Rr 

Action

Table 4.7 The training time of the twelve LSTM networks with the corresponding 

types of features (a) spatial feature, (b) temporal feature, (c) structural feature 

(a) 

Ns 1LSp 2LSp 3LSp 1BSp 2BSp 3BSp 4BSp T1Sp T2Sp T3Sp T4Sp T5Sp 

Ttrn 

(hr) 
2.77 2.76 2.75 2.77 2.81 2.78 2.84 2.79 2.80 2.79 2.83 2.89 

(b) 

Ns 1LTe 2LTe 3LTe 1BTe 2BTe 3BTe 4BTe T1Te T2Te T3Te T4Te T5Te 

Ttrn 

(hr) 
2.76 2.76 2.75 2.77 2.77 2.80 2.80 2.78 2.78 2.79 2.81 2.86 

(c) 

Ns 1LSt 2LSt 3LSt 1BSt 2BSt 3BSt 4BSt T1St T2St T3St T4St T5St 

Ttrn 

(hr) 
2.76 2.75 2.75 2.77 2.76 2.76 2.79 2.75 2.75 2.75 2.78 2.78 
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4.4 Fusion Results 

As mentioned above, two kinds of fusion methods were implemented and the 

classification results are shown in Table 4.8. Similarly to Table 4.4, Table 4.8 shows the 

recognition rates for the corresponding types of actions. Here, 2BSp, 3BTe, T5St, Fu1, and 

Fu2 respectively indicate the two-layer BiLSTM network that is trained by spatial 

features, the three-layer BiLSTM network that is trained by temporal features, the TE-

LSTM with type 5 network that is trained by structural features, the first fusion method, 

and the second fusion method. Besides, 2BSp/3BTe/T5St/Fu1/Fu2 takes about 

2.4/3.7/2/4.3/4.2 seconds to output a classification result. 

 

From Table 4.8, the average recognition rates of the second fusion method is 

higher than that of the first fusion method. Additionally, the average recognition rates of 

the second fusion method are the highest among all the classification methods. The 

second fusion method had the highest recognition rates for all actions except “eat in sit 

and stand positions, play with a phone, and walk away from each other”. The recognition 

rates of these actions was worse than that of 2BSp. This might be because the recognition 

rates of these actions in 3BTe and T5St reduce the recognition rates of these actions when 

Table 4.8 Classification results of fusion methods and three types of features 

 

2BSp 3BTe T5St Fu1 Fu2 

A01 97.96 72.16 81.79 98.08 98.80 

A02 94.34 94.43 81.79 89.60 94.64 

A03 97.43 65.41 15.48 94.75 96.43 

A04 97.93 71.84 92.41 95.85 97.76 

A05 96.00 77.55 68.38 94.00 95.00 

A06 98.89 77.08 0.00 94.67 99.00 

A07 95.31 80.84 84.17 96.46 96.80 

A08 81.82 71.76 42.23 81.00 82.34 

A09 100.00 98.93 55.00 100.00 100.00 

A10 97.41 96.53 89.45 98.18 98.60 

A11 96.88 88.73 91.65 96.87 97.72 

A12 99.88 83.48 67.16 95.37 100.00 

A13 97.82 50.13 63.58 86.00 97.02 

A14 94.51 82.27 71.22 81.04 95.40 

A15 100.00 98.73 94.20 99.83 100.00 

A16 100.00 100.00 91.17 100.00 100.00 

Avg 96.64 81.87 68.10 93.86 96.84 

 

Rr 

Actions 

Classification 

Methods 
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fusion is applied in the second fusion method. 

 

Figure 4.3 shows the confusion matrices of fusion methods. In each matrix, the 

horizontal axis is the classified label, and vertical axis is the true label. The values in the 

matrix indicate the frame level output classification results. For example, assume the 

 
(a) 

 
(b) 

Figure 4.3 Confusion matrix for (a) the first fusion method (b) the second fusion 

method 



42 

 

system outputs 5 classification results for an action sequence, and these results are added 

into the matrix. A higher value is indicated by a darker colour. Comparing the first fusion 

method, Figure 4.3 (a), to the second fusion method, Figure 4.3 (b), some actions are 

sometimes classified incorrectly in the first fusion method. For example, actions A11 to 

A13 are sometimes classified as other interactive actions in the first fusion method. 

Conversely, the second fusion method has fewer errors of this kind. However, the action 

“stand” (A08) is often classified as the action “sit” (A07) in both methods. This may be 

because in the last moment of the action “stand” (A08), the target person is in the stand 

position, and the system starts predicting that the target person is going to sit down. This 

causes the action “stand” (A08) to be classified as “sit” (A07). Figure 4.4 (c) shows the 

classification results of the action “stand”. 

 

Figure 4.4 shows the classification results of the online human action recognition 

 
(a)  

 
(b) 

 
(c) 

Figure 4.4 Classification results of the online system (a) action “sit” (b) action 

“walk toward each other” (c) action “stand” 
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system. The horizontal axis shows the frame numbers of a sequence. The vertical axis 

shows ground truth, spatial feature classification result, temporal feature classification 

result, structural feature classification result, classification result of the first fusion 

method, and classification result of the second fusion method. Each action is represented 

by a colour. 

Figure 4.4 (a), (b) and (c) show the classification results of actions “sit”, “walk 

toward each other” and “stand”. Some output results using spatial features, temporal 

features and structural features are either unknown or classified incorrectly. 

Additionally, although the recognition rates of spatial features are high, the output results 

still have too many unknown classification results. However, by using the first and 

second fusion methods, some of these unknown items can be correctly classified. From 

Figure 4.3 (b) and (c), the classification results of the first fusion method sometimes still 

have incorrect classification results because the LSTM classifiers trained by temporal 

features and structural features affect the classification results and reduce the recognition 

rates. 

4.5 Multi-Human Action Classification Results 

Figure 4.5 shows the multi-human action classification results of the online human 

action recognition system using the same format as Figure 4.4. Figure 4.5 (a) shows a 

sequence containing two actions, “walk toward each other” and “carry object”. The 

recognition rate of the first fusion method is 90.90%, and that of the second fusion 

method is 100.00%. Figure 4.5 (b) shows a sequence containing three actions, “walk 

horizontal”, “sit”, and “drink sit”. The recognition rate of the first fusion method is 

61.90%, and that of the second fusion method is 90.48%. In these examples, the second 

fusion method is better than the first fusion method. This is because the LSTM classifier 

trained by spatial features is more reliable than the other two classifiers and the LSTM 

classifiers trained by temporal features and structural features reduce the recognition 

rates of the first method. Figure 4.5 (c) shows a sequence that contains three action, 

“walk toward each other”, “kick”, and “walk away from each other”. The recognition 

rate of the first fusion method is 87.50%, and that of the second fusion method is 62.50%. 

In this example, the first fusion method is better than the second fusion method. This is 

because the second fusion method completely trusts the LSTM classifier trained by 
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spatial features; however, if that classifier recognises incorrectly, the output results lead 

the fusion to an incorrect classification result. 

Although, the second fusion method has better recognition rates when sequences 

contain only one action class, the first fusion method sometimes has better recognition 

rates for sequences containing multiple actions. Overall, this research recommends using 

the second fusion method because it performs better in most cases. 

 

  

  
                  (a)                                  (b) 

 
          (c) 

Figure 4.5 Multi-action classification results of the online system (a) actions “walk 

toward each other” and “carry object” (b) actions “walk horizontal”, “sit”, and “drink 

in sit position” (c) actions “walk toward each other”, “kick”, and “walk away from 

each other” 
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Chapter 5 Conclusions and Future Works 

 

5.1 Conclusions 

This research proposes a vision-based online human action recognition system that 

can recognise human action under M-Video circumstances. The proposed system 

comprises five stages: human detection, human tracking, feature extraction, action 

classification, and fusion. Moreover, the system uses three types of input information 

for human action recognition: colour intensity, short-term dynamic information, and 

skeletal joints. 

We adopted a 2D human pose estimator, OpenPose [Cao19], to detect humans and 

Deep SORT [Woj17] to track humans. We extracted three types of features, spatial-based 

features, temporal-based features, structural-based features, to analyse human actions. 

These three types of features were input into their corresponding LSTM networks for 

human action classification. Finally, we applied fusion methods to integrate the 

classification results of the LSTM networks to determine the final classification of the 

human action. In this study, we proposed a TE-LSTM network, composed of a TE 

network and a deep LSTM network. Experimental results show that the TE-LSTM 

network can increase the recognition rate based on structural features. 

We also established the CVIU dataset, an M-Video dataset containing 11 types of 

single human actions and 5 types of interactive human actions. The CVIU dataset was 

used to train and to evaluate the proposed system. Experimental results showed that each 

type of feature has a suitable network among twelve kinds of LSTM networks. The two-

layer BiLSTM network can obtain a 96.64% recognition rate of human action from 

spatial features. The three-layer BiLSTM network can obtain an 81.87% recognition rate 

of human action from temporal features. The TE-LSTM network with type 5 can obtain 

a 68.10% recognition rate of human action from structural features. Finally, the 

recognition rate of human action after integration was 96.84%. 
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5.2 Future Works 

The CVIU dataset currently contains only 16 human action classes. However, the 

CVIU dataset could be extended in terms of both the amount of data and the number of 

action classes. This would let the system recognise more human actions in the future. 

This research only trained and evaluated twelve kinds of LSTM networks in the action 

classification stage. However, LSTM networks can be modified to more kinds of 

structures, such as by adding dropout layers and more fully connected layers. Modified 

LSTM networks might obtain a better recognition rate than the twelve networks we 

tested. The highest recognition rate of the LSTM networks trained by structural features 

was only 68.10%. Data augmentation methods could be implemented to enlarge the 

training data to help LSTM networks trained by structural features to perform better. In 

the evaluation stage, the threshold values used to filter out low output probabilities for 

action classification are currently non-automatic. An automatic threshold adjustment 

mechanism could be explored to get a more precise threshold value for the system. 

This study used LSTM networks to classify human actions in the action 

classification stage. However, LSTM networks have many parameters because of the 

three gates that exist in an LSTM cell. Having too many parameters can cause problems, 

such as occupying too much memory, reducing the execution speed, and slowing down 

the network training. The recently proposed Gate Recurrent Unit (GRU) [Chu14] 

networks, another kind of RNN network, contain only two gates in a GRU cell. 

Therefore, the number of parameters in GRU networks is less than that of LSTM. 

Networks with fewer parameters might use less memory, execute quicker, and train 

faster. Consequently, GRU networks may be considered to replace LSTM networks in 

the proposed system. 

Currently, the developed system only applies to indoor spaces. The system could 

be developed to apply to more diverse spaces, such as outdoor spaces. Compared with 

indoor spaces, outdoor spaces are more complicated because the illumination and 

environments are uncontrollable. However, we hope the proposed system could be 

enhanced to recognise human actions in both indoor and outdoor spaces in future. 
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