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Abstract

This research proposes a vision-based online human action recognition system.
This system uses deep learning methods to recognise human action under moving
camera circumstances. The proposed system consists of five stages: human detection,
human tracking, feature extraction, action classification and fusion. The system uses
three kinds of input information: colour intensity, short-term dynamic information and
skeletal joints.

In the human detection stage, a two-dimensional (2D) pose estimator method is
used to detect a human. In the human tracking stage, a deep SORT tracking method is
used to track the human. In the feature extraction stage, three kinds of features, spatial,
temporal and structural, are extracted to analyse human actions. In the action
classification stage, three kinds of features of human actions are respectively classified
by three kinds of long short-term memory (LSTM) classifiers. In the fusion stage, a
fusion method is used to leverage the three output results from the LSTM classifiers.

This study constructs a computer vision and image understanding (CVIU) Moving
Camera Human Action dataset (CVIU dataset), containing 3,646 human action
sequences, including 11 types of single human actions and 5 types of interactive human
actions. Single human actions include drink in sit and stand positions, eat in sit and stand
positions, play with a phone, sit down, stand up, use a laptop, walk straight, walk
horizontal, and read. Interactive human actions include kick, hug, carry object, walk
toward each other, and walk away from each other. This dataset was used to train and
evaluate the proposed system. Experimental results showed that the recognition rates of
spatial features, temporal features and structural features were 96.64%, 81.87% and
68.10%, respectively. Finally, the fusion result of human action recognition for indoor

smart mobile robots in this study was 96.84%.

Keywords: Online human action recognition, indoor smart mobile robot, deep
learning, long short-term memory, bi-directional long short-term memory, temporal
enhancement long short-term memory, spatial feature, temporal feature, structural

feature.
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Chapter 1 Introduction

1.1 Research Motivation

Indoor smart mobile robots have rapidly been adopted for human society and are
widely used in public or private indoor spaces for guidance, entertainment, home
service, security and so on. For example, a guidance robot such as Troika [1], shown in
Figure 1.1 (a), moves around in the airport and provides directions and guidance for
tourists. Entertainment robots such as Aibo [2], which is a dog-shaped entertainment
robot as shown in Figure 1.1 (b), can be used to play with children or pets in the house.
Home service robots such as Zenbo [3], shown in Figure 1.1 (c), are used to provide
company to family members. Multifunctional smart robots such as Pepper [4], shown in
Figure 1.1 (d), can be used as receptionists at offices and banks, home companions at
home, and educational robots at schools, universities, and colleges.

These kinds of robots have a level of interaction and self-determination abilities,
which are due to the “intelligence” of the robots. This intelligence is created through

artificial intelligence techniques. Robots with intelligence are called smart robots.
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Figure 1.1 Indoor smart mobile robots (a) Troika (b) Aibo (c) Zenbo (d) Pepper

The aforementioned indoor smart mobile robots, such as Troika [1], Aibo [2],
Zenbo [3], and Pepper [4], have already been released and used in houses, airports,
stores, and other indoor spaces. These robots are respectively produced by Lucky-
Goldstar (LG), a South Korean multinational electronics company; Sony, a Japanese
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multinational conglomerate corporation; Asus, a Taiwan-based multinational computer
and phone hardware and electronics company; and SoftBank Robotics, a holding
company in the SoftBank Group. All of these robots mainly interact via voice
commands. Zenbo can also interact via a touch screen.

In summary, indoor smart mobile robots are mainly interactive through the
application of voice recognition systems and touch screen systems. Indeed, verbal
commands and screen touching commands are direct and smart human-robot interactive
techniques. However, voice recognition systems typically have limitations with respect
to different languages, various accents and even speaking tone. A touch screen system
limits the possible distance between the user and the robot. That is, a user must be close
enough to touch the screen or to see the content of icons shown on the screen.

Vision-based recognition systems provide an alternative type of direct and smart
human-robot interaction. The users interact with the robot through a vision-based human
action recognition system. With this system, users are only required to perform a daily
life action in front of the robot, and the robot is expected to see and recognise the action
and then perform the corresponding reflection. For example, if a robot sees the user sits
on a chair, then the robot can move to the user and provide the user some water and food.
With this approach, users who speak different languages can smoothly interact with the
robot. Further, because of the vision-based setting, the robot is capable of interacting
with a human remotely. Thus, the barriers and limitations associated with voice
recognition and touch screen systems can be solved by using a vision-based online
human action recognition system. Such systems can therefore diversify human-robot
interaction approaches for future robot products.

Moreover, many global market companies have a positive outlook on robot
markets and have forecasted increases in the coming years in smart robots, indoor robots,
mobile robots, service robots, and other robots. Therefore, robot markets, no doubt, will
become a bull market of the world.

The smart robot market is a promising prospect according to research from
Maximize Market Research, as shown in Figure 1.2 [9], where the number below the
bar indicates the years. The number above the bar indicates the market value to the
corresponding years, and the unit is billion USD. The research from Maximize Market
Research has reported and forecasted the value of the smart robot market from 2017 to

2026. In 2017, the smart robot market was valued at USD 4.54 billion and the market is
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expected to grow to USD 29.46 billion by 2026 at a Compound Annual Growth Rate
(CAGR) 0f 23.1% over the forecast period from 2017 to 2026.

Smart Robot Market Size Through 2017 to
2026 (in Billion)
CAGR:- 23.1%

Source: Maximize Market Research

Figure 1.2 Smart robot market from 2017 to 2026 as reported by Maximize
Market Research [9]
This research also reported and forecasted the value of the global indoor robot
market from 2018 to 2026, as shown in Figure 1.3 [10], where the number below the bar
indicates the year and colours indicate particular regions. The global indoor robot market

is predicted to have a CAGR of 28.9% over the forecast period from 2018 to 2026.

Global Indoor Robots Market, by Region

2019 2022 2024 2026

m North America wEurope w Asia Pacific MEA = South America

Figure 1.3 Global indoor robot market from 2018 to 2026 as reported by Maximize
Market Research [10]

Markets And Markets reported and forecasted the value of global mobile robot
market from 2018 to 2023, as shown in Figure 1.4 (a) [11], where the number below the
green bar indicates years. The number in the green bar indicates the market value for the
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corresponding years and the unit is billion USD. In 2018, the mobile robot market was
valued at USD 18.7 billion and the market is expected to grow to USD 54.1 billion by
2023 at a CAGR 0f 23.71% over the forecast period from 2018 to 2023.

Mordor Intelligence [12] reported and forecasted the value of the global service
robotics market from 2020 to 2025, as shown in Figure 1.4 (b), where the number below
the orange bar indicates the years and the arrow indicates the CAGR during 2020 to
2025. The value of global service robotics market in 2019 was USD 14.39 billion and it
is expected to grow to USD 63.80 billion with a CAGR of 25.34% over the forecast

period.
Mobile Robots Market Global Service Robotics Market
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Figure 1.4 Global robotic market (a) global mobile robotics market from 2018 to
2023 as reported by Markets And Markets [11] (b) global service robotics market
from 2020 to 2025 as reported by Mordor Intelligence [12]
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Figure 1.5 Robotics market summary from 2020 to 2025 reported by Mordor
Intelligence [13]

The overall robotic market is shown in Figure 1.5 [13], where the number below
the blue bar indicates the years. The arrow indicates the CAGR during 2020 to 2025.
Mordor Intelligence [13] reported the value of the robotic market was USD 39.72 billion
in 2019 and predicted it to have a CAGR of 25% over the forecast period from 2020 to
2025.



Furthermore, Mordor Intelligence also shows the overall robotics market growth
rate during 2019 to 2024 by region, as shown in Figure 1.6 [13], where different colours
indicate different growth rates. Specifically, green regions indicate high growth rates,
yellow regions indicate medium growth rates and red regions indicate low growth rates.
The colours cover over half the world. Undoubtably, robotics markets have a huge

economic impact globally.

Robotics Market - Growth Rate by Region (2019-2024)
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Figure 1.6 Robotics market growth rates by regions [13]

Indoor smart mobile robots seem to have a tremendous economic outlook and a
high chance of bringing considerable economic benefit to many countries. With such
high growth rates in the indoor smart mobile robot markets, it is clear such robots will
be widely used in the foreseeable future. Therefore, a diversity of hardware and software
products is necessary to satisfy different kinds of customer requirement. Here, hardware
refers to the physical parts of the robots, such as the central processing unit, robot
appearance, and monitor. The software refers to the abstract part of the robots, such as
control systems, input recognition systems, output systems, and inference systems.
Improvements in both hardware and software will increase the economic values of the
robots. This research focuses on improving the input recognition system, which is part
of the software.

Different types of input recognition systems process different kinds of input
information and can result in different types of human-robot interactions. For example,
a voice recognition system lets robots interact with humans via voice commands, a touch
screen system lets robots interact with humans via screen touching, and a human action
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recognition system lets robots interact with humans via human action commands.

This research develops a vision-based online human action recognition system for
indoor smart mobile robots. The system is expected to let a robot recognise human
actions while the robot is moving towards the user as well as recognise human actions

online.

1.2 Background and Difficulty

Human action recognition has been a challenging computer vision problem in
video analysis for decades. Methods of human action recognition can be divided into
online and offline approaches. Offline methods classify human actions after obtaining
the entire sequence. By contrast, online methods can classify actions from only a partial
sequence. Both types of method classify the action of the current frame based on the
information from previous frames. Only online methods have the characteristic of early
action classification.

Online human action recognition can be done using a traditional machine learning
approach or a deep learning approach. A machine learning example is Hoai and De la
Torre’s [Hoal2] proposed maximum-margin framework based on a structured output
support vector machine (SVM) to achieve online action prediction. A deep learning
example is De Geest and Tuyelaars’ [Del8] proposed two-stream feedback neural
network built based on a recurrent neural network (RNN) with long-short term memory
networks (LSTM) [Hoc97]. Both approaches are popular for solving the online human
action recognition problem. However, this research utilises a deep learning method to
build the online human action recognition system and tries to explore the characteristics
of recurrent neural networks.

Most online action recognition systems [Hoal2] [Del8] are designed to process
video obtained from stationary camera videos. To design this kind of system, there are
two main problems to solve:

(1) the transformation of real-world three-dimensional (3D) human action into
two-dimensional (2D) video might cause object occlusion,

(2) the non-rigid body of the target person might cause difficulty in human tracking
and recognition.

In addition, it is hard to simulate the vision of a mobile robot from stationary



camera videos. Mobile robots are capable of moving so a moving camera is required to
simulate vision. In the rest of the article, human action videos recorded by stationary
camera are called S-Videos and those recorded by moving camera are called M-Videos.

Developing an online action recognition system with M-Videos is more difficult
than with S-Videos. For example, while the camera is moving, (1) the background is
changing in every frame; (2) distances between target persons and the camera are
changing; therefore, the size of the target person in the video is also changing; (3)
illumination of each frame may not remain consistent; and (4) a moving camera may
experience camera vibration.

Trends in smart mobile indoor robots are emerging, and robots will service elders
in their house, help humans in the airport, and be used in other indoor spaces. Further,
as mentioned above, interaction through human action commands is a direct and smart
human-robot interactive approach. In response to these future trends, this research
proposes a vision-based online human action recognition system using a deep learning
method to recognise human actions under moving camera circumstances for indoor

smart mobile robots.

1.3 Research Contribution

This research has three main contributions: the collection of an M-Video dataset
of human actions, a human action recognition system to recognise human actions under
moving camera circumstances, and a proposed method that simultaneously utilises
multiple types of feature information to recognise human actions.

(1) M-Video dataset

Many human action datasets have been established and provided by different
groups and universities for human action recognition experiments. However, many of
these datasets, including NTU RGB + D 120 Dataset (NTU) [14], Berkeley Multimodal
Human Action Dataset [15], KTH-Dataset [16], SBU Kinect Interaction Dataset [17],
and PKU Multi-Modality Dataset (PKU-MMD) [18], are S-Videos. M-Videos datasets
have rarely been established.

Therefore, this research collects an M-Video dataset called computer vision and
image understanding (CVIU) Moving Camera Human Action dataset. The human

actions are recorded while the camera is moving towards the target persons. Chapter 4



provides details about this dataset.

(2) Human action recognition system under moving camera circumstances

Most research in this field focuses on stationary camera circumstances. However,
there has been little development of human action recognition systems under moving
camera circumstances, which the current research aims to do. The proposed system
applies human detection and human tracking to the target persons, and then extracts three
types of features from the target persons to provide respective LSTM classifiers to
analyse the human actions. Finally, a fusion method is used to integrate these three
output results to determine the final classification for the human action. Experimental
results show that the proposed model is robust and stable.

(3) Utilise three kinds of feature information simultaneously

The developed system recognises human actions using three kinds of feature
information simultaneously: features obtained from red-green-blue (RGB) colour
images, features obtained from optical flow and features generated from human skeletal
joints. Each type of feature has a tailored LSTM model and an output result. We then
use fusion methods to integrate these three output results to improve the human action
recognition rate. Experimental results show that these three kinds of features can cover

each other’s deficiencies.

1.4 Thesis Framework

This thesis comprises 5 chapters. Chapter 1 introduces the research motivation,
research background and difficulty. Chapter 2 discusses related works. Chapter 3
illustrates and details the system flowchart. Chapter 4 presents experimental results to
show the improvement of the proposed system. Finally, Chapter 5 concludes this

research and presents future works.



Chapter 2 Related Work

This chapter discusses some relevant research on human action recognition. The
first part introduces various types of features, including spatial and temporal features.

The second part introduces human action classifiers.

2.1 Features of Human Action Recognition

Extracting suitable features to represent different actions is key to achieving
human action recognition. Spatial and temporal features are those associated with space
and time, respectively. Generally speaking, spatial features can be extracted in one frame
whereas temporal features can be extracted from at least two successive frames.

(1) Spatial Features

Skeletal joints are one type of spatial feature. Many datasets have proposed
skeletal joint information for researchers, such as NTU Dataset [14], PKU-MMD
Dataset [18], and SBU Kinect Interaction Dataset [17]. NTU [14] and PKU-MMD
Dataset [18] provide 25 3D-location joints for each person. SBU Kinect Interaction
Dataset [17] provide 15 3D-location joints for each person. Many researchers [Han18§]
[Jun18] [Shal6] [Sonl8] [Tul8] [Lil7] [Liul8] have used skeletal joints as features to
classify human actions, although some have used skeletal joints provided by the
established datasets and some have extracted their own data.

Skeletal joints can be preprocessed to increase their quality as features. Jun and
Choe [Junl8] presented data-augmentation methods, such as tilting, flipping, and scale
variation on the skeletal joints, to enlarge their training dataset. Tu et al. [Tul8] proposed
an LSTM auto-encoder model (LSTM-AE) to eliminate noise and preserve the whole
action representation of the skeletal joints. Song et al. [Sonl8] proposed a spatial and
temporal attention model to detect and recognise human actions. They also preprocessed
the skeletal joints to maintain consistency for joint position and different perspectives.
They smoothed each skeletal joint position to decrease the impact of noise before human
action recognition and implemented an attention-based model to enhance the important
skeletal joints.

Skeletal joints can be also used to extract higher-level features. Li et al. [Lil7]



calculated the Euclidean distance between each pair of skeletal joints, and the area of
the triangle region among three neighbouring skeletal joints as higher-level features of
human action classification.

Liu et al. [Liul8] proposed a tree-structure based traversal method to represent the
structure of skeletal joints. This kind of representation links neighbouring skeletal joints
to enhance their interdependency.

Soomro et al. [Sool19] proposed an online action localization and prediction
system. They extracted individual skeletal joints using a Convolutional Pose Machines
(CPM) [Weil6] method. Moreover, they proposed a high level structural information
method to reduce the influence of noise by smoothing the locations of obtained skeletal
joints, and to minimise the displacements of joint locations by scaling the height of the
skeletal joints.

Colour/intensity information is another type of spatial feature extracted by various
methods. Some researchers [Ull18] [Del8] [Ouyl19] [Hual9] [Youl9] [Goel8] [Dul§]
[Liul9] have used neural network methods, and others [Nill] [Liul0O] have used
traditional image processing methods.

Ni and Xu [Nil1] proposed a statistical model based on sparse representation of
space-time features to recognise human actions. This model uses the Harris3D detector
to find the point of interest in space-time, and then applies a Histogram of Gradients
(HOG) descriptor to extract the spatial features. Liu et al. [Liul0] proposed an action
recognition framework based on multiple features. The proposed method uses Cuboids
[Dol05] and 2D Scale-Invariant Feature Transform (SIFT) to extract local spatial
features. Moreover, a frame differencing method is implemented to focus on the region
of interest and 2D Gabor filters are applied to extract global spatial features.

Ullah et al. [UNl18] proposed a human action recognition model using a bi-
directional LSTM model (BiLSTM) [Sch97]. The proposed model extracts spatial
features from the last fully connected layer of a pre-trained convolutional neural network
(CNN) model, AlexNet [Kril2]. Ouyang et al. [Ouyl19] proposed a network consisting
of a 3D CNN model [Tral5] and an LSTM model to recognise human actions. In this
architecture, they split an action sequence into 25 clips and randomly select 16 frames
in each clip. These selected frames are resized into 112 X 112 pixels to be input into
the 3D CNN. The output of the last fully connected layer of the 3D CNN is defined as
the spatial features.
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Huang et al. [Hual9], You and Jiang [Youl9], Liu et al. [Liul9], and Goel ef al.
[Goel8] developed online systems. Huang et al. [Hual9] proposed an online action
detection and prediction model based on a convolutional recurrent neural network
(RNN). In this model, spatial features are extracted from the output of the last
convolutional layer of a pre-trained Visual Geometry Group (VGG)-16 model [Sim14].
The feature dimensions are then reduced by employinga 1 X 1 convolutional layer.

You and Jiang [Youl9] proposed a deep neural network model, Action4DNet, to
recognise human actions. This model uses 3D CNNs to extract lower-level spatial
features of each person. These extracted features are passed through an attention model
[Bah14] and a global max-pooling layer [Lin13] to extract higher-level spatial features.

Goel et al. [Goel8] proposed an online human activity detection algorithm using
support vector machine (SVM). To extract spatial features, they proposed a Person-
Centred CNN (PC-CNN) method. PC-CNN first uses a Single Shot Multibox Object
Detector (SSD) [Liul6] to detect persons. Next, the regions of detected persons are
cropped and resized into 224 X 224 pixels. Finally, the resized regions are sent into a
ResNet-152 [Hel6] network to extract spatial features from the last flatten layer.

(2) Temporal Features

LSTM networks are powerful for learning long-term dependencies and modelling
sequential data. Moreover, LSTM networks can solve the problem of vanishing gradients
associated with the fundamental network structure, RNN, in the training stage.
Therefore, many researchers [Lil7] [Liul7] [Tul8] [Son18] [Jun18] [Hanl8] [Liul8]
[Liul9] [UI119] [Del8] [Youl9] [Ull18] [Dul8] [Ouyl19] have adopted LSTM models
to extract temporal features.

Song et al. [Son18] proposed a spatial and temporal attention model to exploit the
importance of each frame. In this model, they added a temporal attention model, which
can define the importance level of each frame, to improve the LSTM model. Liu ef al.
[Liul9] first passed skeletal joints through convolution operations to extract richer
temporal statistics and then input these into the LSTM model to extract temporal
features.

De Geest and Tuyelaars [Del8] proposed a two-stream LSTM feedback network
to detect and classify actions. This network used a two-stream LSTM model to extract
temporal features. One LSTM stream is used to interpret the input frames, and the other
is used to capture the temporal dependencies. Ullah et al. [Ull18] proposed an action

11



recognition model based on a bidirectional LSTM (BiLSTM) network. They regularly
sampled one-sixth of the frames in a sequence and input these into the BILSTM model
to extract the temporal dependencies. The goal of frame sampling is to reduce the
computational complexity of the proposed system.

Ouyang et al. [Ouy19] proposed a human action recognition network using both a
3D CNN model and an LSTM model. In this architecture, they passed the input
sequences through the 3D CNN to enhance the temporal feature representation. They
then sent the enhanced temporal features to the LSTM model to extract the final temporal
features.

Optical flow is a type of temporal feature that is widely used to observe short-term
dynamics. Jagadeesh and Patil [Jag16] addressed a vision-based human action detection
and recognition method using optical flow. This method calculates optical flow between
frames and then converts the calculated optical flow data to binary images. Finally, they
applied the HOG descriptor to the optical flow to extract temporal features. Ullah ef al.
[Ull19] proposed an activity recognition network based on multilayer LSTM models. In
this network, they used a pre-trained optical flow detection neural network, FlowNet2
[Tlg17], to obtain optical flow. They extracted the feature maps from the final
convolutional layers of FlowNet2 [Ilgl7] and used a global average pooling to obtain
temporal features.

In summary, the above research adopted two kinds of spatial features: human
skeletal joints and colour information. Importantly, skeletal joints can be used to roughly
describe the structure of human poses whereas colour information contains more details
of human poses.

As mentioned above, colour information can be extracted by neural network
methods and traditional image processing methods. Using traditional image processing
methods, researchers should decide feature extraction methods themselves. However,
the results of selected methods are expected and may be unsuitable to classify human
actions. By contrast, with neural network methods, researchers have a higher probability
of finding unexpected and suitable spatial features since the neural networks can learn
automatically. Therefore, this research adopts neural network methods to extract spatial
features.

Moreover, this research adopts two kinds of temporal extraction methods for

human action sequences: optical flow methods and the LSTM network. Optical flow
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methods can capture short-term dynamics and LSTM networks can capture long-term
dynamics. By knowing the temporal dynamics of the sequences, the system can discover

the discrimination of each human action in the temporal domain.

2.2 Models of Human Action Recognition

In recent years, deep learning methods have been widely studied and developed
for human action recognition. Many researchers [Li17] [Liul7] [Tul8] [Son18] [Junl8]
[Han18] [Liul8] [Liul9] [UIl19] [Del8] [Youl9] [Hual9] [Ull18] [Ciol8] [Dul§]
[Ouyl9] [Chal9] have used deep learning methods to develop their human action
recognition models. Some of these studies use the offline approach [Chal9] [Wanl6]
[Lil7] [Tj;14].

Wang et al. [Wanl6] proposed a spatio-temporal features representation method,
Joint Trajectory Maps (JTM), to use with the 2D CNN model, AlexNet [Kril2], to
recognise human actions. JTM features are generated by three Cartesian planes of human
action trajectories and are sent into an AlexNet [Kril2] model to recognise human
actions. However, 2D CNN models could not learn temporal information, so the
information of human action temporal dynamics may be lost.

Chang et al. [Chal9] proposed a 3D VGG-13 model to recognise human actions.
The authors replaced the 2D CNNSs in the original VGG-13 with 3D CNNs to construct
the 3D VGG-13 network. 3D CNNs are used to learn the spatial and temporal features,
but they focus on learning local spatial and temporal features of sequences. Such local
information may be easily affected by noise and there might be a risk relating to lost
global information of whole sequences.

On the other hand, some researchers [Liul7] [Youl9] [Liul9] [Del8] have
developed their human action recognition system using online approaches. De Geest and
Tuyelaars [Del8] developed a two-stream feedback network to detect and classify
human actions. The two-stream feedback network consists of an upper stream LSTM
network, a lower stream LSTM network, and a fully connected layer. The upper stream
LSTM is used to interpret the input information. The lower stream is used to capture
temporal information. Moreover, the fully connected layer is used to project the features
into the action classes. In this study, the intensities of RGB colour model are the input

information and are first analysed by a CNN model. The results are then sent into the
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two-stream feedback network to detect and classify human actions. However, this study
ignored other kinds of features, such as skeletal joints or short-term dynamic features.
We think each kind of feature can be uniquely analysed for human actions, which would
combine to increase the accuracy of human action recognition.

Liu et al. [Liul9] proposed a Multi-Modality Multi-Task RNN to classify and
forecast human actions. The human action forecast aimed to find the start and end points
of an action. This network is a two-stream system. The first stream processes the skeletal
joint information, and the second processes the colour intensity information. These two
types of information are first processed by using convolutional layers individually. Then,
the features extracted from the convolutional layers are sent into a deep LSTM network
with two subtask networks for action classification and forecast, respectively. The deep
LSTM network alternately stacks three LSTM layers and three fully connected layers,
with a fully connected layer with softmax at the end. The two subtask networks mainly
consist of fully connected layers. However, this proposed network ignores the
uniqueness of each type of input information. Different kinds of input information have
corresponding suitable networks, such as various stacks of LSTM layers and various
orders of fully connected layers and LSTM layers. We believe that a tailored network
for various types of input information can get more meaningful results.

In summary, this research adopts three types of features to analyse various aspects
of human actions: colour intensity, short-term dynamic information, and skeletal joints.
Our proposed system is based on LSTM networks. Compare with 3D CNNs, which have
weaknesses related to analysing global information, LSTM networks is superior for
learning global temporal features. LSTM networks treat each frame of the input
sequence as one input vector and analyse the relationship of all input vectors directly.
This means that the temporal dependencies of sequences can be enhanced. Additionally,
this research tries to implement corresponding tailored LSTM networks for different

characteristics of features.
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Chapter 3 Online Human Action Recognition

System

This chapter discusses the online human action recognition system flowchart
proposed by this study. We briefly introduce the purpose of this research and then

illustrate and detail the system flowchart.

3.1 Research Purpose

This research aims to provide diverse human-robot interaction options for indoor
smart mobile robots and to overcome the limitations of voice recognition systems and
touch screen systems. We aim to solve the camera moving and online recognition
problems. This research develops a system using neural networks due to the recent
development and robustness of deep learning techniques. That is, this research proposes
an online human action recognition system using deep learning techniques. By analysing
the human actions through the proposed system, the actions can be successfully
recognised and indoor smart mobile robots can give the corresponding reflection to

users.

3.2 System Flowchart

RGB Video Human Detection —> Human Tracking [

Spatial-Based el
- Classification 1 Result 1
| Feature Extraction | assification — S
LSTM Model 1
Action Ly
Temporal-Based . ; )
> Feature Extraction [ Clessification2 i —/  Result2 Fusion
[LSTM Model ? | -
Action ‘L
Structural-Based . :
| Feature Extraction |~ Clagsification 8 /" Result8 Final Action
[LSTM Model 3] al Act

Figure 3.1 Flowchart of online human action recognition system
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The system flowchart is shown in Figure 3.1. This flowchart has five stages:
human detection, human tracking, feature extraction, action classification, and fusion.
Note that feature extraction involves three types of features, spatial, temporal features
and structural, and they each have their own classifier.

After the RGB videos are input into the system, the persons existing in the video
are detected and tracked. Here, the detected persons are called target persons. Next, three
kinds of features are extracted from the regions of target persons in each frame. These
features are then input into their corresponding action classifiers. Finally, the outputs of

the three action classifiers are fused together to determine the final human action.

3.2.1 Human Detection

The system adopts OpenPose, a real-time multi-person 2D human pose estimator
proposed by Cao et al. [Cao19], to detect humans because it has high speed and accuracy.
Figure 3.2 compares OpenPose with other human pose estimators proposed in the
literature, including Alpha-Pose [Fan17], Mask R-CNN [Hel7], PersonLab [Pap18], and
METU [Koc18]. In Figure 3.2, the horizontal axis indicates the frames per second (FPS)
of a video where each frame contains three target persons. The vertical axis indicates the
accuracy (mean average precision) of the results of the human pose estimators. The

OpenPose estimator [Cao19] use in this research is highlighted in red triangles.
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® PersonLab* | |

® METU*
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5O
o o

w
o

0 5 10 15 20 25 30
Speed for 3-people images (FPS)
Figure 3.2 Comparison of human pose estimators [Cao19]
From Figure 3.2, the OpenPose estimator [Cao19] has the highest FPS, which is
the most important property of online systems. Although the OpenPose estimator

[Cao19] sometimes fails to detect all the skeletal joints, this shortcoming does not affect

the human detection results. Moreover, our system will fill these missing skeletal joints
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to improve the OpenPose estimator [Caol9] in the human tracking stage.

Nose

Right Eye Left Eye
Right Ear—— &— LeftEar
v Neck

Right Shoulder — & Left Shoulder

&—— Left Elbow l I

Right Elbow ——>
Right Hip Left Hip
Right Wrist——> & Left Wrist
Right Knee —— &—— LeftKnee
Right Ankle ——> &—— Left Ankle
(a) (b)

Figure 3.3 Human skeletal joints (a) location of joints (b) result of joints extraction

(a) (b)
Figure 3.4 Results of human detection (a) completed joint extraction (b) incomplete
joint extraction

The OpenPose estimator [Cao19] can extract 18 human skeletal joints for each
person. These skeletal joints are two hips, two knees, two ankles, two shoulders, two
elbows, two wrists, two ears, two eyes, a nose, and a neck, as shown in Figure 3.3 (a).
An example of the results of joint extraction is shown in Figure 3.3 (b). By using the
skeletal joints information, the system can enclose and detect the human successfully.
The human detection results are shown in Figures 3.4 (a) and (b), which respectively
show examples of complete and incomplete extraction. One can observe that the

proposed system can detect the human, whether or not skeletal joints are fully extracted.

3.2.2 Human Tracking

After the human detection stage, this system uses a Deep Simple Online and
Realtime Tracking (Deep SORT) method proposed by Wojke et al. [Woj17] to track each
person in the input video. Some examples of human tracking results are shown in Figure
3.5, where the symbols shown above the bounding boxes, e.g., P-1, P-2, indicate the
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person index of the target person. The green and blue bounding boxes show the results
of human detection. One can observe that Deep SORT [Wojl7] correctly tracks the

humans.

Figure 3.5 Results of human tracking

As mentioned above, the OpenPose estimator [Caol9] can extract 18 human
skeletal joints for each person. However, the skeletal joints on the head are removed in
this study because they are not as important for human action detection, and they are
easily detected incorrectly. Therefore, the 18 skeletal joints are reduced to 13 joints in
this stage, as shown in Figure 3.6 (a). The detection result is shown in Figure 3.6 (b).
After the skeletal joint reduction, some missing skeletal joints are filled in at the human

tracking stage.

Right Shoulder — 1, P4 x4<_ Left Shoulder

Right Elbow ——> x?,
Right Hip
Right Wrist —— x>

xs(_ Left Elbow
Left Hip

x%—— Left Wrist

Right Knee —— x8 x11¢&—— Left Knee

Right Ankle ——> x?

Figure 3.6 Reduced skeletal joints (a) skeletal joints without head joints (b)
detection result of skeletal joints without head joints

x12¢&—— Left Ankle

Two approaches are used to fill the missing joints. Assume a missing joint x; has
not been detected at frame i. Then, we have the following cases.

Case (1): The neck joint, x?, is found at frame i. A missing joint x; can be
predicted by the relative difference between the neck joint and its corresponding joint at
frame i — 1, (x;_; —x?,), as shown in Equation (1).

x; = x4+ (0o —x) ) XS (1)
where i indicates frame number, X; indicates a missing joint at frame i, and x;_;
indicates the corresponding detected joints of the missing joint x; at frame i — 1. Note
that x;_; is detected and not a missing joint. Symbols x? and x , indicate the neck
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joints at frames i and i — 1, respectively.

Figure 3.7 Schematic diagram of body height

In Equation (1), S is defined as S = HHi , where H; and H;_; are the body

i-1
heights in the frames i and i — 1, respectively. The body height is the Euclidean
distance between the neck joint and the centre between the hip joints, illustrated by the
red point in Figure 3.7. Thus, S can maintain the consistency of the human height
between frame i and i — 1. The camera moving problem can be fixed partially by

considering the scale change of the same person in two successive frames.

(a) (b)
Figure 3.8 An example of joint filling (a) a missing joint (b) result of joint filling

Figure 3.8 shows an example of joint filling. In Figure 3.8 (a), the white points are
the extracted skeletal joints. However, the right wrist joint has not been successfully
extracted, as highlighted by a red circle. Figure 3.8 (b) shows the result of joint filling.
In Figure 3.8 (b), the white circles indicate the original extracted skeletal joints, and the
blue points indicate the filled joints. Clearly, the missing right wrist joint has been filled,
as highlighted by a red circle.
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Case (2): The neck joint, x?, is not found at frame i. A missing joint x; can be
predicted by the relative difference between its corresponding missing joints at frames
i—1 and i —2, (x;_; —x;_3), as follows:

xp = %1 + (Xio1 — Xi-2) (2)
where i indicates frame number, x; indicates the missing joints at frame i, and x;_4,
and x;_, indicate the corresponding detected joints of the missing joints x; at frames
i—1 and i— 2, respectively. Note that x;_; and x;_, are not missing. The
difference between frame i — 1 and i — 2, (x;_; — x;_,), is used to determine the
moving direction of joints to predict the missing joints at frame i.

Similarly to Figure 3.8, Figure 3.9 illustrates an example of joint filling. In this
example, only three joints are detected successfully, and the others, including the neck
joint, have not been extracted, as shown in Figure 3.9 (a). Figure 3.9 (b) shows the result
of joint filling. In this situation, the system may obtain some joint information from the
current frame; therefore, the degree of similarity between the filled joints and the real
joints is lower. However, the joint filling step is still helpful for the following human

action recognition stage.

(b)
Figure 3.9 An example of filling the missing joints (a) the missing joints (b) result
of joint filling

3.2.3 Feature Extraction

As mentioned above, three types of features, spatial, temporal and structural, are
used to distinguish human actions and provide information for the action classification
stage. The spatial features are extracted from RGB colour images, as shown in Figure

3.8 (a). Temporal features are extracted from optical flow, as shown in Figure 3.8 (b).
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Structural features are extracted from human skeletal joints, as shown in Figure 3.8 (c).

(a) (b) ()
Figure 3.10 Input information (a) RGB colour images (b) optical flow (¢) human
skeletal joints

Both spatial and temporal features are extracted by the pre-trained CNN model,
InceptionV3, which was proposed by Szegedy et al. [Szel6] in 2016. Table 3.1 (a)
outlines the InceptionV3 architecture, including the input size and patch size of every
layer. Specifically, the system extracts human action features from the output of the final
pool layer, which has dimensions of 1 X 1 X 2048. Table 3.1 (b) shows the evaluation
results comparing InceptionV3 with other networks such as PReLU [Hel5], BN-
Inception [Iofl5], VGGNet [Sim14], and GoogLeNet [Szel5] proposed by Szegedy et
al. One can observe that InceptionV3 has the lowest error rate for both Top-1 error and
Top-5 error. Further, InceptionV3 is pre-trained on the ImageNet dataset.

Note that the system crops and resizes the input frames before extracting spatial
and temporal features. In the cropping step, the system broadens the bounding box by
100 pixels in both left and right and 150 pixels in both top and bottom to increase the

spatial information.

Table 3.1 InceptionV3 (a) outline of InceptionV3 architecture (b) evaluation results
comparing InceptionV3 with other models [Sze16]

(a) (b)

type ‘ patch size/stride ‘ Ei ’

or remarks
conv 3x3/2 299%299x3
conv 3x3/1 149x149x 32
conv padded 3x3/1 147x147x 32 .
pool 3%x3/2 147X 147x64 ‘ Network E‘:f;‘l’l‘ligs Crops T Top-1 T"Top-5
cony 3x3/1 73X 73x64 VGGNet 2 : 23.7% | 6.8%
conv 3x3/2 71x71x80 GoogLeNet 7 144 - 6.67%
conv 3x3/1 35x35x192 PReLU - - : 4.94%
3xInception | Inception modules | 35x35x288 BN-Inception 6 144 20.1% 4.9%
5xInception | Inception modules | 17x17x768 nception-v3 > 4 144 17.2% | 3.58%"
2xInception | Inception modules | 8x8x1280
pool 8x8 8 x 8 x 2048
linear logits €1 x 1 x 204877
softmax classifier 1 x 1 x 1000

Once the system crops the target persons, the cropped human region is resized into
500%x450 pixels and sent into InceptionV3 [Szel6] for spatial feature extraction. Note

that the cropped human region contains one person if only one person appears in a frame,
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but it contains two persons if two persons appear in that frame. The cropped and resized
human regions are called CR regions hereinafter. The system calculates the Farneback
optical flow using two successive CR regions, and sends it into another InceptionV3
[Szel6] to extract temporal features.

Cropping and resizing the human region can partially fix the camera moving
problem because cropping can force the system to focus on the target persons, and
resizing can make the human regions consistent in all frames. Moreover, resizing the

cropped human regions lets them fit the input shape of InceptionV3 [Szel6].

0
100
200
300

200

100
200
300

400

Figure 3.11 An( ae)xample of optical flow calcu(lz)tion (a) two successive (ii)put frames
(b) their corresponding CR regions (c) optical flow

Figure 3.11 shows an example of the process to obtain optical flow. Figures 3.11
(a) and (b) show two successive input frames and their corresponding CR regions,
respectively. Figure 3.11 (c) shows the optical flow obtained by those successive CR
regions. The arrows between Figures 3.11 (a), (b) and (c) indicate the processing
direction. In summary, each frame can extract a 1 X 1 X 2048 dimension spatial
feature vector and two successive frames can extract a temporal feature vector of the
same size. Moreover, each input sequence with N frames can construct a feature map
whose size is N X 2048.

Structural features are obtained by calculating the relationship between each pair
of skeletal joints. As mentioned above, each person has 13 skeletal joints that can be
extracted. Thus, single human actions and interactive human actions by two persons
respectively contain 13 and 26 skeletal joints in each frame. However, the system

preserves sufficient memory space to record 26 skeletal joints in each frame, whether
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the frame has one or two persons appearing. The system applies zero-padding to frames
containing under 26 skeletal joints for the purpose of preparing information for structural
feature extraction.

Next, the system calculates two kinds of distances on pairwise skeletal joints and
concatenates them to be the structural features. One is the Manhattan distance (1-norm)
and the other is the Euclidean distance (2-norm). In each frame, the system can calculate
2 X (3%(= 650) 1-norm features and 1 X C3°(= 325) 2-norm features for pairwise
skeletal joints. Especially, 1-norm features calculate the location difference of pairwise
skeletal joints on x-axis and y-axis respectively. Concatenating these features, the system
can obtain 3 X (3°(= 650 + 325 = 975) features. Moreover, each input sequence
with N frames can construct a feature map whose size is N X 975.

Figure 3.12 shows two examples of the visualization results of spatial, temporal
and structural feature maps. The human action in these examples, as shown in Figure
3.12 (a), is “walk toward to each other”. The two sequences each contain 20 (N = 20)
frames. Figures 3.12 (b), (¢) and (d) show their corresponding spatial (green), temporal
(purple), and structural (blue) feature maps, respectively. The horizontal axis indicates
the dimension of feature vectors and the vertical axis indicates frame numbers. In
particular, the structural feature maps have a second horizontal axis on the bottom, which
shows 1-norm features (blue) from 0 to 650 and 2-norm features (red) from 650 to 975.
The shade of colours in these feature maps indicate the magnitude of the extracted
features. The corresponding ruler is shown on the right side of the feature maps,
indicating that smaller values have a lighter colour. In spatial and temporal feature maps
(see Figures 3.12 (b) and (c)), if the values are greater than one, they are represented in
red.

Figure 3.13 shows another two examples of the visualization results of spatial,
temporal and structural feature maps, this time for the drink in stand position, as shown
in Figure 3.13 (a). Similarly to above, Figures 3.13 (b), (c) and (d) show the
corresponding spatial (green), temporal (purple) and structural (blue) feature maps,
respectively.

From these feature maps, one can observe that similar human actions have similar
values of features and vice versa. This kind of characteristic can lead the classifiers to
more easily obtain successful classification results.

The structural feature maps contain information about the relationship between
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skeletal joints for both single and interactive actions. For example, in the feature maps
of the action “walk toward each other” shown in Figure 3.12 (d), the values of the
features are slowly decreasing from time step 0 to 20. This kind of variation means that
the skeletal joints are getting closer, which matches the action. By contrast, in the feature
maps of the action “drink in stand position” shown in Figure 3.13 (d), the values of the
features barely change from time step 0 to 20. This kind of variation means that the

skeletal joints only minorly change, which matches the action.
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Figure 3.12 Two examples of feature map visualization (a) human actions (walk
toward each other) (b) corresponding spatial feature maps (c) temporal feature maps
(d) structural feature maps
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Figure 3.13 Examples of feature map visualisation (a) human actions (drink in stand
position) (b) corresponding spatial feature maps (c) temporal feature maps (d)
structural feature maps

3.2.4 Action Classification

This research adopts LSTM networks to classify human action. Each type of
feature can be well classified by an appropriate and targeted network. Therefore, twelve
kinds of LSTM networks are implemented to find appropriate ones for the three types
of features. A new proposed temporal enhancement LSTM (TE-LSTM) is among the
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implemented twelve networks. This subsection gives a brief overview of the LSTM
networks and describes the LSTM models.

(1) Overview of the LSTM Network

The LSTM network improves on the RNN. As mentioned above, the RNN suffers
from vanishing gradients in the training stage, and the LSTM network solves this
problem.

The LSTM network consists of at least one LSTM layer, and each LSTM layer
contains many LSTM cells. An LSTM cell includes a forget gate, an input gate, and an
output gate, as shown in Figure 3.14. These three gates regulate, store, and add or remove
the information at each cell. The input gate decides what new information should be
added to cell state. The forget gate decides which cell states should be retained or
removed. The output gate decides the final output vector based on the processed cell

state. An LSTM cell is shown in Figure 3.14.

Ct-1 @
f Ganh>
‘ ad 0:(X)

0] | |tanh| | 0 |
hey he

= 2=

Figure 3.14 An LSTM cell

Given an input vector, x;, at time step t and a hidden state vector, h,_;, at t —
1, the output values of forget gate (f;), input gate (i), output gate (o;), and memory cell

candidate (a;), as shown in Figure 3.14, can be obtained by the following equations.

ft = as(wfxt + ufht_1 + bf). &)
iy = og(Wixy + uhe_q + by). (6)
0 = os(Woxy + ughi_q + by). (7)
ar = op(Wexy + uche_q + be). (8)

where wr, wi, w,, W., Ur, U, U,, and U, indicate parameter matrices. The

symbols bs, b;, b,, and b., are bias vectors, and o; and g;, indicate the sigmoid
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function and the tangent function, respectively.
The cell state vector, c;,_q, at t —1 can be regarded as the memory of the
previous time step and can be used to make the connection with the cell state vector, c;,

at t. Then, c¢; can be calculated by

Ct = fo * Ce—q i * ar. ©)

Finally, the hidden state vector, h;, at time step t is defined as

he = o¢ * op(cy). (10)
where the operator * denotes the element-wise product.

(2) LSTM Networtks

Twelve kinds of LSTM networks, including LSTM networks with various layers,
BiLSTM networks with various layers and the proposed TE-LSTM networks, are
implemented to find suitable ones for the three types of features. Table 3.2 shows the
structures of three LSTM networks with one, two and three layers, respectively.
Different types of features can be input to train LSTM models. In Table 3.2, 1Lsp, 1L,
and 1Ls: indicate the structures of the LSTM networks with one-layer LSTM that are
trained by spatial features, temporal features, and structural features, respectively.
Similarly, 2/3Lsp, 2/3Lte, and 2/3Ls; indicate the structures of the LSTM networks with
two/three-layer LSTM trained by spatial features, temporal features, and structural
features, respectively.

LSTM;, i = 1,2,3,4, as shown in Table 3.2, indicate the hidden state units of the
ith LSTM layers, and FC;, j = 1,2, indicates the neuron numbers of full-connected

layers. The neuron number of FC,, 16, is equal to the number of human action classes.

Table 3.2 Structures of LSTM networks

Structure 1-Layer LSTM 2-Layer LSTM 3-Layer LSTM
1Lsp | 1Lte | 1Lst || 2Lsp | 2Lt1e | 2Lst || 3Lsp | 3Lte | 3Lst
LSTM, 1024 | 512 | 1024711024 | 512 | 102411024 | 512 | 1024
LSTM. 512 | 256 | 512 |1 1024 | 512 | 1024
LSTM; 512 | 256 | 512
FC, 128 | 128 | 128 || 128 | 128 | 128 || 128 | 128 | 128
FC, 16 16 16 16 16 16 16 16 16

Table 3.3 shows the structures of four BILSTM networks with one, two, three, and
four layers. As in Table 3.2, 1/2/3/4Bsy, 1/2/3/4Bre and 1/2/3/4Bs; indicate the structures
of the BiLSTM networks with one/two/three/four-layer BILSTM which are trained by

spatial features, temporal features, and structural features, respectively. Further,
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BiLSTM;, i = 1,2,3,4, indicates the hidden state units of the BiLSTM layers.

Table 3.3 Structures of BILSTM networks

1-Layer BiLSTM || 2-Layer BiLSTM || 3-Layer BiLSTM || 4-Layer BiLSTM

Structure e S B T 1B, || 2Bsy | 2Bre | 2Bs: || 3Bs, | 3Br | 3Bs || 4By, | 4By | 4By,
BILSTM: | 2048 | 2048 | 1024 || 2048 | 2048 | 1024 || 2048 | 2048 | 1024 | [ 2048 | 2048 | 1024
BILSTM: 1024 | 1024 | 512 || 2048 | 2048 | 1024 || 2048 | 2048 | 1024
BILSTM: 1024 | 1024 | 512 || 1024 | 1024 | 512
BILSTM. 512 | 512 | 256
FC, 128 128 128 128 128 128 128 128 128 128 128 128
FC, 6 | 16 | 161/ 16 | 16 | 161 16 | 16 | 16 | 16 | 16 | 16

Additionally, one BiLSTM networks consists of two LSTM layers to process input
sequences in two directions. One processes the input sequence from the first frame to
the last frame (forward) along the time axis, and the other processes it from the last frame
to the first frame (backward). In BiLSTM networks, the relationships of temporal
variations can be analysed in both forward and backward directions. In summary,
BiLSTM networks may capture better temporal dependencies than LSTM networks in
some cases.

This study implemented five types of temporal enhancement (TE)-LSTM
networks: TE-LSTM1, TE-LSTM2, TE-LSTM3, TE-LSTM4 and TE-LSTMS. These all
have the same structure, a general TE-LSTM structure, but some of the layers use

different LSTM models.
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Figure 3.15 Network of a general TE-LSTM
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A general TE-LSTM network comprises a TE network and a deep LSTM network,
as shown in Figure 3.15. The TE network consists of an LSTM module and two fully
connected layers. The deep LSTM network consists of two LSTM modules and three
fully connected layers. Furthermore, the TE network can analyse the sequences to find
their important parts and then pay more attention to those parts. By going through the
TE network, the temporal information of sequences can be enhanced. The deep LSTM
network then analyses the enhanced temporal sequences and classifies human actions.
Noted that the LSTM modules can be either LSTM network or BiLSTM network.

In the TE network, the feature sequences are first passed through the LSTM
module and two fully connected layers to analyse the input sequences. Next, the
analysed sequences are normalised using the softmax normalisation method. Finally, the
normalisation outputs are multiplied by the feature sequences using element-wise
product operation. In the deep LSTM network, the product result is passed through two
LSTM modules and three fully connected layers sequentially to classify the human

actions.

Table 3.4 Structure of TE-LSTM networks (a) structure of TE-LSTMI (b) structure

of TE-LSTM2
(@) (b)
TE-LSTM1 TE-LSTM2
Structure Tls, | Tlw | Tls Structure T2s, | T2r | T2s
LSTM1 2048 | 2048 | 975 LSTM? 2048 | 2048 | 975
FCi 2048 | 2048 | 975 FC? 2048 | 2048 | 975
FC3 2048 | 2048 | 975 FC2 2048 | 2048 | 975
FVN v v v FVN X X X
® v v v ® x x x
LSTM1 512 512 512 LSTM? 512 512 512
LSTM} 256 256 256 LSTM?2 256 256 256
FC] 128 128 128 FC2 128 128 128
FC; 128 128 128 FCZ 128 128 128
FC2 16 16 16 FCZ 16 16 16

Tables 3.4, 3.5 and 3.6 show the structures of these five TE-LSTM networks.
Similarly to Table 3.2, T1/2/3/4/5sp, T1/2/3/4/57e, and T1/2/3/4/5s; indicate the structures
of the TE-LSTM1/2/3/4/5 networks trained by spatial features, temporal features and
structural features, respectively.

In Tables 3.4, 3.5 and 3.6, LSTM}, i = 1,2,3, n = 1,2,3,4, and BiLSTM}, i =
1,2,3, n = 3,4,5 indicate the hidden state units of the ith LSTM/BiLSTM layers of the
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nth TE-LSTM networks, respectively. Here, FC}’ , j=12345, n=1,234,5,
indicates the neuron numbers of fully-connected layers. The neuron number of FCZ, 16,
is equal to the number of human action classes. Moreover, FV'N and ® respectively
indicate whether the features vector normalization, softmax normalization, and the

element-wise product has been applied. A tick indicates the technique has been applied,

and a cross indicates otherwise.

Table 3.5 Structure of TE-LSTM networks (a) structure of TE-LSTM3 (b) structure

of TE-LSTM4

(@) (b)
Structure TE-LSTM3 Structure TE-LSTM4

T3sp | T3t | T3st T4sp | T4t | T4s

BiLSTM3 | 4096 | 4096 | 1950 LSTM# 2048 | 2048 | 975
FC3 2048 | 2048 | 975 FC} 2048 | 2048 | 975
FC3 2048 | 2048 | 975 FC3 2048 | 2048 | 975
FVN v v v FVN v v v
o) v v v o) v v v
LSTM3 512 | 512 | 512 BiLSTM?# | 1024 | 1024 | 1024
LSTM3 256 | 256 | 256 BiLSTM% | 512 | 512 | 512
FC3 128 | 128 | 128 FC# 128 | 128 | 128
FC3 128 | 128 | 128 FCs 128 | 128 | 128
FC3 16 16 16 FC? 16 16 16

Table 3.6 Structure of TE-LSTMS5
TE-LSTMS5

T5sp T51e T5st

BiLSTM? 4096 4096 1950

Structure

FC? 2048 2048 975
FC3 2048 2048 975
FVN v v v
® v v v

BiLSTM3 1024 1024 1024
BiLSTM3 512 512 512

FC3 128 128 128
FC; 128 128 128
FC2 16 16 16

3.2.5 Fusion

Let the outputs of the three LSTM classifiers trained by spatial features, temporal

features, and structural features at time t be vts P vle and vt respectively. A fusion
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method should be used to integrate these three outputs to determine the fusion action
class c[ “ . Noted that each of vts P vre, and v3¢ contains 16 probability values
corresponding to the 16 action classes and the probability values are between 0 to 1.
Here, ots P ol and 03¢ indicate the highest probability values of vts P vre and vt

at time t, and their corresponding action classes are cf P cle and c;t, respectively.
In this study, two kinds of fusion method are implemented and compared with each

other to find the characteristics of fusion. Both methods consider the output action class

fu

from the previous time, c;_;, to classify the human action at the current time.

In the first fusion method, the output classes of the three types of features, cf P

p

cle, and ¢, have their corresponding highest probability values o0;”, of¢, and 0,

respectively. The fusion action class c[ “ is assigned by the class with the maximum

. s o S -
probability values among o,”, of¢, and o7, if ¢,*, cI°, and ¢ are all different

p

u . S .
from c[_l. For example, consider the case where ¢, ctT € and ctSt are different from

u S S N . u . .
tf_l, and max[o,”,0l¢, 05t] = 0,”. Then, c{ = c,"?. Otherwise, c{ is assigned to

fu
Ci_1-

c

In the second fusion method, the output class can be determined by the following

equation.

(11

Sp e fu Sp fu Te fu St
fu {ct if ¢;2; #¢;" and c¢,_; #¢/° and c¢/_; #c;

t u .
c[_l otherwise

Experimental results show that the LSTM classifier trained by spatial features has

higher recognition rates compared with those classifiers trained by temporal features and

p

structural features, respectively. This suggests that the action class cts is sometimes

more trustworthy than ¢/ and c7t. Therefore, in the second fusion method, the fusion

. u - . S . S - u
action class ctf is assigned to ctp if ctp, cle, and ¢t are all different from c{_l.

Otherwise, ctf “ is assigned to thfl.
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Chapter 4 Experimental Results

This chapter describes the research environment and equipment and provides
details about the CVIU Moving Camera Human Action Dataset. The action
classification results for the three types of features individually and the fusion results of
action classification are presented. We also show the online human action recognition

results of a multi-action sequence.

4.1 Research Environment and Equipment Setup

The focal point of this research is to recognise human actions under moving
camera circumstances. This research simulates the moving camera circumstances by
moving a four-wheel movable cart with a Kinect v2 sensor on it in a clean background
classroom. The cart is 76.5 cm high and 45 cm wide. The CVIU Moving Camera Human
Action dataset was built with this environment and equipment. This research was
implemented in Python 3.7 using Keras 2.3, TensorFlow 1.15 and OpenCV4.1 run on
NVIDIA GeForce GTX 1080 Ti on Ubuntu 16.04.

4.2 CVIU Moving Camera Human Action Dataset

We established an M-Video dataset called the CVIU Moving Camera Human
Action dataset (CVIU dataset). The CVIU dataset contains 3,646 human action
sequences (252,048 frames), including 11 types of single and 5 types of interactive
human actions. The types of single human actions include drink in sit and stand
positions, eat in sit and stand positions, play with a phone, sit down, stand up, use a
laptop, walk straight, walk horizontal, and read. The types of interactive human actions
include kick, hug, carry object, walk toward each other, and walk away from each other.

This dataset was recorded from three perspectives and each human action
sequence was recorded while the camera was slowly moving towards the target persons.
The first recording perspective, D1, had the Kinect v2 sensor facing the target person.
The second recording perspective, D2, had the Kinect v2 sensor on the right side of the

target person with a 45° angle. The third recording perspective, D3, has the Kinect v2
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sensor on the left side of the target person with a 45" angle. Figure 4.1 provides a
schematic diagram of the recording dataset including the three recording perspectives,
and the recording environment and equipment. Figure 4.2 shows three recording

perspectives for a human action sequence, “carry object”.

Classroom

I /nem v2 sensor|/| Laptop |

| Four-wheel movable cart |

Whiteboard

g

€&—— : Four-wheel movable cart moving direction

Figure 4.1 Schematic diagram of recording dataset

(c) D3
Figure 4.2 Three recording perspectives for “carry object” (a) D1, (b) D2, (¢) D3

4.3 Action Classification Results of Three Types of Features

This research adopts the CVIU dataset to train and test the networks. In the training
stage, action sequences are subsampled and extracted three types of features. And, these

three types of features are individually fed into the LSTM networks for training. In the
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testing stage, full action sequences are classified by the system in an online manner.
Thus, the system outputs an action classification result by feeding 20 continuous frames.
However, for the next 20 frames, the system inputs the last 10 frames from the previous
20 frames and the next continuous 10 frames. That is, the system outputs the first action
classification result after feeding 20 frames continuously. Then, the system outputs a
result every 10 frames. This kind of method can speed up the system without affecting
the recognition of human action in the sequences. Note that the training and testing data
are distinct. This subsection describes frame sampling number selection, preprocessing,
and the action classification results of the CVIU dataset.

(1) Decision of Frame Sampling Number

This research uses the CVIU dataset for frame sampling number decision, which
implements a one-layer LSTM network, to find a suitable frame sampling number. We
chose six classes of human action from the CVIU dataset, three single and three
interactive classes. The single human actions are use a laptop, drink in stand position,
and eat in stand position. The interactive human actions are walk toward to each other,
kick, and carry object. We used 240 sequences for training (40 for each action), 60

sequences for validating (10 for each actions), and 180 sequences for testing (30 for each

action).
Table 4.1 Decision results of frame sampling number

F1-Measure etwork Frame Sampling 10 Il Frame Sampling 15 Frame Sampling 20
Action 1Lsp 1Lt 1Ls; 1Lsp 1Lt 1Ls; 1Lsp 1L1e 1L
Use a laptop 1.000 | 0.789 [ 0.842 || 0.984 | 0.732 | 0.692 || 0.984 | 0.841 | 0.596
Drink in stand position | 0.815 | 0.261 | 0.238 || 0.929 | 0.392 | 0.103 |[ 0.909 | 0.523 | 0.433
Eat in stand position 0.822 | 0.536 | 0.565 || 0.892 | 0.426 | 0.577 || 0.892 | 0.311 [ 0.701
Walk toward each other | 0.696 | 0.061 | 0.063 || 0.667 | 0.121 | 0.300 |{ 0.947 | 0.278 | 0.333
Kick 0.866 | 0.532 | 0.454 || 0.822 | 0.624 | 0.522 || 0.968 | 0.615 | 0.483
Carry object 1.000 | 0.691 | 0.600 || 1.000 | 0.852 | 0.540 || 1.000 | 0.866 | 0.585
Avg | 0.872 | 0.533 | 0.522 || 0.889 | 0.578 | 0.494 || 0.950 [ 0.617 | 0.544

The decision results of frame sampling number are shown in Table 4.1, where
1Lsp, 1Lte, and 1Ls: indicate a one-layer LSTM network trained by spatial features,
temporal features, and structural features, respectively. Frame Sampling 10/15/20
respectively indicate the number of frame sampling as 10/15/20 frames. The recognition
rates of F1-measurements are provided for single actions (listed in the blue region) and
interactive actions (listed in the orange region). Avg refers to the average recognition
rates of F1-measurement of each type of features with the corresponding number of

frame sampling.
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From Table 4.1, the average accuracy of frame sampling 20 had better recognition
rates than the other options. This research also found that most actions can be finished
within 20 frames. Therefore, the following experiments use subsampled human actions
sequences to 20 frames to train the networks.

(2) Preprocessing

Preprocessing was implemented to determine whether it helps the system increase
recognition rates. Preprocessing includes cropping and resizing the frames, and filling
the skeletal joints. The number of training, testing, and action classes are the same as for

the frame sampling selection. Table 4.2 shows the results of preprocessing. Similarly to

Table 4.1, 121,

1215, and 1/2L%, indicate a one/two-layer LSTM network trained
by the processed spatial features, temporal features, and structural features, respectively.

Here, 1/2Lg},,1/2L7,, and 1/2Lg; indicate networks trained without using preprocessing.

Table 4.2 Results of preprocessing using 1/2-layer LSTM networks

Networks

F1-

Measur Without Preprocessing Preprocessing

1 L‘gp 1 LYTve 1 L‘évt 2 L‘évp 2 LYTve 2 L‘évt 1 Lgp 1 Lg’e 1 Lgt 2 Lgp 2 LpT e 2 L]gt

Actions

Use laptop 0.667 0267 0375 | 0578 0238 0.27o!| 1.000 0769 0844 | 1.000 0.682 0235
K I
Drink in stand 0.000 0.000 0.000 | 0.057 0327 0286 0951 0438 0000 | 0967 0264 0.607
position i

. |
Eat in stand 0506 0431 0299 | 0.528 0486 0.514/1.000 0.158 0624 | 1.000 0.108 0.105
position |

Walk toward each
other

0.710 0.350 0.093 | 0.333 0.716 0.300i|0.868 0.537 0.538 | 0.537 0.500 0.333

Kick 0.776  0.526  0.125 | 0.674 0.659 0.558 | 0.923 0.806 0.596 | 0.769 0.692 0.619
Carry object 0.594 0.469 0.000 [ 0.044 0.468 0.520| 0984 0.896 0.467 | 0.984 0.844 0.700
Avg | 0.588 0.400 0.227 | 045 0516 0.450 || 0955 0.650 0.567 | 0.889 0.572 0.483

From Table 4.2, the average accuracies with preprocessing were higher than
without preprocessing. This proves that preprocessing does help the system to increase
recognition rates. Thus, the following experiments all implemented preprocessing.

(3) Action Classification Results of the CVIU Dataset

This experiment uses all 16 human action classes in the CVIU dataset. Training
data included 1696 sequences, evaluation data included 350 sequences and testing data
included 1600 sequences. Table 4.3 lists the total human action sequences used for action
classification experiments. Training, Validation, and Testing indicate the training data,
validation data, and testing data, respectively. The human actions are represented by AO1
to A16 with the amount of each sequence shown. Note that the actions “hug” and “kick”

(highlighted in red) have more training data than the other actions. This is because these

35



two actions are more complicated. For example, in the action “kick”, a person can kick
with their left or right leg. For the action “hug”, the person’s hands can be in various

positions.

Table 4.3 The total amounts of human action sequences used for action classification

Sequences Data Types Training | Validation | Testing
Actions

AO01: Drink in sit position 89 22 100
A02: Drink in stand position 89 22 100
AO03: Eat in sit position 88 22 100
A04: Eat in stand position 91 22 100
A05: Play with a phone 90 22 100
A06: Read 91 21 100
AO07: Sit 93 22 100
A08: Stand 92 21 100
A09: Use a laptop 90 22 100
A10: Walk horizontal 95 22 100
All: Walk straight 89 22 100
A12: Carry object 96 22 100
A13: Walk away from each other 94 22 100
Al4: Walk toward each other 90 22 100
Al5: Hug 223 22 100
A16: Kick 196 22 100
Total 1696 350 1600

As mentioned above, each type of feature has a proper LSTM network and we
tested twelve types of LSTM networks trained by the three feature types. To evaluate
which networks are appropriate for each feature type, we used an evaluation criteria, R,
as shown in Equation (12), to evaluate the networks.

Assume the system obtains n output classification results in a sequence, that is a
set of action output probabilities, X = {x, x5, ..., X, }. A threshold, 6, can filter out the
probabilities which are low while retaining the set of action output probabilities which
are higher than the threshold, X' = {x; > 0 | x; € X}, Vi € n. Each kind of network
has a particular threshold value. The threshold values of spatial features, temporal

features, and structural features are 80%, 60%, and 70%, respectively.

_ N¢
Ng

R, (12)

where N, indicates the cardinality of X', N, = |X'|. Further, N, indicates the
number of correct classified human actions within X', N, = |{xj: Cory | x; € X’}|,
Vj € n, where Cor, indicates a correctly classified human action.
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Tables 4.4, 4.5 and 4.6 show the action classification results using spatial features,
temporal feature, and structural features, respectively. Here, Nyand R, indicate networks
and recognition rates, respectively, and 1/2/3Lsp/resst, 1/2/3/4Bsprresst, T1/2/3/4/5spmerst
are the aforementioned networks trained by spatial, temporal, and structural features,
respectively. The training time of these networks are shown in Table 4.7. N5 and Tin
indicate networks and training time respectively. Time is measured in the unit of hour.
Note that AO1 to A1l are the single actions, and A12 to A16 are the interactive actions.
Avg is the average R, of each type of feature with the corresponding networks and feature

types. The unit is percentage (%).

Table 4.4 Action classification results of spatial features

1 Lsp 2Lsp 3Lsp 1 Bsp 2Bsp 3Bsp 4Bsp T1 Sp TZsp T3sp T4sp TSsp

98.65 | 9932 | 71.00 9921 | 97.96 | 9830 98.98 0.00 98.72 0.00 0.00 0.00

99.38 | 99.08 | 93.79 9873 | 9434 | 96.65 96.05 0.00 99.42 0.00 | 76.46 | 68.62
A03 95.79 | 92.75 64.00 95.18 | 97.43 96.15 98.62 0.00 95.56 0.00 0.00 0.00
A04 98.64 | 9324 | 55.00 96.89 | 97.93 98.45 97.87 0.00 98.21 0.00 | 8513 | 33.65
A05 9422 | 97.00 7.00 85.00 | 96.00 | 94.57 94.40 0.00 95.00 0.00 0.00 0.00
A06 99.41 | 98.88 | 11.00}] 100.00 | 98.89 | 98.32 99.37 0.00 99.07 0.00 0.00 0.00
A07 9337 | 91.66 | 93.00 95.67 | 9531 92.04 92.55 0.00 95.98 0.00 | 93.80 0.00
A08 8532 | 85.64 | 34.55 8125 | 81.82 | 81.00 83.93 0.00 84.37 0.00 0.00 0.00
A09 100.00 | 99.88 | 98.00/| 100.00 | 100.00 [ 100.00 | 100.00 0.00 | 100.00 0.00 0.00 | 98.00
Al10 95.66 | 97.73 98.00 96.40 | 97.41 98.20 97.20 || 10.00 99.27 0.00 | 8935 | 67.57
All 95.06 | 95.93 99.00 99.47 | 96.88 95.75 94.89 0.00 97.15 0.00 | 7927 | 14.33
Al2 99.21 | 99.20 | 100.001! 100.00 | 99.88 99.28 9955 63.08 99.64 0.00 | 47.84 | 97.32
Al3 95.72 | 97.14 | 90.80 98.50 | 97.82 95.67 96.27 0.00 95.88 0.00 | 81.07 | 98.00
Al4 93.13 | 86.48 | 9533 93.15 | 9451 91.32 91.83 0.00 90.13 0.00 | 6337 | 3333
Al5 98.00 | 97.89 | 91.00}| 100.00 | 100.00 | 100.00 | 100.00|| 84.61 98.00 [ 85.11 | 96.02 | 89.73
Al6 9727 | 96.00 | 73.67|] 100.00 | 100.00 | 100.00 | 100.00}| 85.40 96.67 | 3940 | 9483 | 97.17
Avg 96.18 | 9549 | 7345 9621 | 96.64 | 95.98 96.34 || 15.19 96.44 778 | 5045 | 43.61

For spatial features, the highest average recognition rates of LSTM, BiLSTM, and
TE-LSTM networks were respectively achieved by the one-layer LSTM network
(96.18%), two-layer BILSTM network (96.64%), and TE-LSTM network with type 2
(96.44%), as shown in Table 4.4. The two-layer BILSTM network had the highest

recognition rate among all the networks, so we choose it to classify human actions that
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are analysed using spatial features.

For temporal features, the highest average recognition rates of LSTM, BiLSTM,
and TE-LSTM networks were respectively achieved by the one-layer LSTM network
(71.58%), three-layer BiLSTM network (81.87%), and TE-LSTM network with type 2
(75.16%), shown in Table 4.5. The recognition rate of the three-layer BILSTM network
had the best results with a recognition rate 10.29% higher than that of the one-layer
LSTM network. Thus, we choose the three-layer BILSTM network to classify human

actions that are analysed using temporal features.

Table 4.5 Action classification results of temporal features

R N
1Lt | 2Lt | 3Lt IBr. | 2Bt | 3Bre 4Bt || Tlre T2r | T3 | T4t | Tor
Actiong

A01 33.33 9.67 7.00 5196 | 5420 | 72.16 38.85 0.00 44.65 0.00 0.00 0.00
A02 8033 | 72.62 | 49.20 92.13 | 84.48 94.43 79.08 0.00 85.48 0.00 | 49.81 0.00
A03 49.61 | 50.67 | 35.00 63.60 | 57.96 65.41 53.98 0.00 58.39 0.00 0.00 0.00
A04 6422 | 7004 | 5833 5898 | 76.32 71.84 79.63 0.00 61.80 0.00 | 67.52 0.00
A05 7797 | 6540 | 17.00 86.93 | 65.48 77.55 64.72 0.00 84.48 0.00 0.00 0.00
A06 2142 | 46.08 6.00 51.08 | 87.71 77.08 77.52 0.00 63.53 0.00 0.00 0.00
A07 88.04 | 9329 | 8625 87.43 | 7835 80.84 86.47 0.00 9221 0.00 0.00 | 65.00
A08 7149 | 7065 | 47.63 53.87 | 61.73 71.76 5261 0.00 67.74 0.00 0.00 0.00
A09 89.90 | 99.49 | 88.00 9936 | 99.08 98.93 99.00 0.00 97.41 0.00 0.00 0.00
A10 96.97 | 94.58 | 94.00 97.15 | 97.72 96.53 94.34 0.00 94.87 0.00 | 73.39 | 95.61
All 85.90 | 90.01 73.32 88.59 | 86.07 88.73 91.57 0.00 62.55 0.00 | 85.83 0.00
Al2 70.75 | 66.07 | 76.53 74.79 | 79.53 83.48 38.07 0.00 72.48 0.00 | 20.18 | 48.62
Al3 44.97 | 3457 | 39.68 5145 | 59.42 50.13 48.12 0.00 46.53 0.00 | 39.68 | 13.10
Al4 84.88 | 86.69 | 89.34 79.34 | 8241 82.27 82.33 0.00 77.95 0.00 | 33.14 | 35.77
Al5 95.69 | 9321 | 86.86 99.88 | 98.12 98.73 | 100.00 0.00 9579 | 9279 | 71.68 | 88.61
Al6 89.83 | 93.67 | 84.67 97.67 | 97.67 | 100.00 70.55| 67.00 96.67 | 41.09 | 7556 | 93.07
Avg 71.58 | 71.04 | 58.68 7714 | 79.14 | 81.87 72.30 4.19 75.16 837 | 3230 | 27.49

For structural features, the highest average recognition rates of LSTM, BiLSTM,
and TE-LSTM networks were respectively achieved by the two-layer LSTM network
(59.63%), three-layer BiLSTM network (60.35%), and TE-LSTM network with type 5
(68.10%), as shown in Table 4.6. The recognition rate of the TE-LSTM network with
type 5 was 8.47% higher than that of the two-layer LSTM. Thus, we choose the TE-
LSTM network with type 5 to classify human actions that are analysed using structural
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features. Additionally, the TE-LSTM network with type 2 had the lowest recognition

rate among other TE-LSTM networks, proving that the TE network enhances the

temporal information of sequences.

Table 4.6 Action classification results of structural features

R N
1Ls | 2Lst | 3Lst || 1Bst | 2Bst | 3Bst | 4Bst || Tlse | T2st | T3st | Tdst | T3st
|Action

A0l 0.00 | 3572 | 2333 0.00 | 30.50 | 50.50 2.001] 73.00 | 61.04 | 5552 | 5584 | 81.79
A02 0.00 | 60.65 | 82.79 0.00 | 8335 | 80.53 | 4870)) 8325 | 73.94| 7256 | 9228 [ 81.79
A03 0.00 225 4.00 0.00 1.00 0.00 0.00 6.08 2.25 0.00 [ 5937 | 1548
A04 0.00 | 68.09 | 53.39 0.00 | 43.57 | 84.10 | 19.00f] 75.10 | 58.03 | 62.58 | 5291 | 9241
A05 0.00 | 6638 | 57.08 0.00 | 3647 | 39.00 | 2600 6467 | 7140 | 92.80 | 3892 [ 6838
A06 0.00 1.00 1.00 0.00 1.50 1.00 0.00 3.40 0.00 0.00 | 35.08 0.00
A07 0.00 | 8518 | 92.14 0.00 | 9495 | 87.83 | 6877|) 90.17 | 87.79 | 6574 | 93.01 | 84.17
A08 0.00 | 46.82 | 67.05 0.00 | 60.68 | 56.83 | 3550 7547 | 5544 | 4642 | 57.68 | 4223
A09 0.00 | 59.46 4.00 0.00 | 29.00 | 10.00 000/} 1722 | 2936 | 3292 | 63.87 | 55.00
Al10 450 | 74.68 | 7513 73.48 | 8033 | 92.19 | 90.06]] 8571 | 69.95| 81.75 | 91.24 | 89.45
All 0.00 | 78.00 | 37.86 0.00 | 5223 | 60.17 | 84.25]| 90.50 | 42.65 | 7185 | 64.75 | 91.65
Al2 33.85 | 52.72 | 4450 3544 | 4724 | 6743 | 5723 49.62 | 58.64 | 5052 | 46.88 | 67.16
Al3 51.60 | 6247 | 68.10) 56.07 | 5857 | 72.50 | 63.83]| 89.98 | 6742 | 5257 | 63.35| 63.58
Al4 27.06 | 69.47 | 7539 66.84 | 7020 | 7570 | 74.62|| 71.73 | 68.79 | 65.60 | 69.33 [ 71.22
Al5 7278 | 93.66 | 9524 82.73 | 9395 | 8927 | 94.25]| 90.01 | 91.08 | 88.88 | 90.08 | 94.20
Al6 87.47 | 9595 | 95231 89.17 | 95.00 | 98.50 | 96.50{f 98.00 | 97.17 | 9933 | 97.90 [ 91.17
Avg 17.33 | 59.53 | 5476 2523 | 5491 | 6035 | 47.54]|] 6649 | 5843 | 5869 | 67.03 [ 68.10

Table 4.7 The training time of the twelve LSTM networks with the corresponding
types of features (a) spatial feature, (b) temporal feature, (c) structural feature

(a)

NS lLSp 2LSp 3LSp lBSp 2BSp 3BSp 4BSp T 1 Sp Tzsp T3 Sp T4Sp TS Sp
(Thtr“; 2.77 | 2.76 | 2.75 | 2.77 | 2.81 | 2.78 | 2.84 | 2.79 | 2.80 | 2.79 | 2.83 | 2.89
(b)

NS 1 LTe 2LTe 3LTe 1 BTe 2BTe 3BTe 4BTe T 1 Te T2Te T3Te T4Te TSTe
(Thtr“; 276 | 2.76 | 2.75 | 2.77 | 2.77 | 2.80 | 2.80 | 2.78 | 2.78 | 2.79 | 2.81 | 2.86
(©
Ns | 1Ls¢ | 2Lst | 3Lst | 1Bst | 2Bst | 3Bst | 4Bst | Tlst | T2s¢ | T3st | T4st | TSst
(Thtr“; 276 | 275 | 2.75 | 2.77 | 2.76 | 2.76 | 2.79 | 2.75 | 2.75 | 2.75 | 2.78 | 2.78
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4.4 Fusion Results

As mentioned above, two kinds of fusion methods were implemented and the
classification results are shown in Table 4.8. Similarly to Table 4.4, Table 4.8 shows the
recognition rates for the corresponding types of actions. Here, 2Bsp, 3BTe, TSst, Ful, and
Fu2 respectively indicate the two-layer BILSTM network that is trained by spatial
features, the three-layer BILSTM network that is trained by temporal features, the TE-
LSTM with type 5 network that is trained by structural features, the first fusion method,
and the second fusion method. Besides, 2Bsp/3Br1e/TSs/Ful/Fu2 takes about
2.4/3.7/2/4.3/4.2 seconds to output a classification result.

Table 4.8 Classification results of fusion methods and three types of features

Classification
R Yethods 1R 3Bre T5s: Ful Fu2
Actions

A01 97.96 | 72.16| 81.79| 98.08| 98.80
A02 9434| 9443| 81.79| 89.60| 94.64
A03 97.43 | 65.41 1548 9475| 96.43
A04 97.93 | 71.84] 9241| 9585 97.76
A05 96.00 | 77.55| 68.38| 94.00| 95.00
A06 98.89 |  77.08 000 94.67| 99.00
A07 9531| 80.84| 84.17| 96.46| 96.80
A08 81.82| 71.76| 4223 81.00| 82.34
A09 100.00 | 98.93| 55.00| 100.00 | 100.00
A10 97.41| 96.53| 89.45| 98.18| 98.60
All 96.88 | 88.73| 91.65| 96.87| 97.72
Al2 99.88 | 8348 | 67.16| 95.37| 100.00
Al3 97.82] 50.13| 63.58] 86.00| 97.02
Al4 9451 8227] 71.22] 81.04] 9540
Al5 100.00 | 9873 | 9420| 99.83| 100.00
Al16 100.00 | 100.00 |  91.17| 100.00 | 100.00
Avg | 96.64| 81.87| 68.10] 93.86| 96.84

From Table 4.8, the average recognition rates of the second fusion method is
higher than that of the first fusion method. Additionally, the average recognition rates of
the second fusion method are the highest among all the classification methods. The
second fusion method had the highest recognition rates for all actions except “eat in sit
and stand positions, play with a phone, and walk away from each other”. The recognition
rates of these actions was worse than that of 2Bs;,. This might be because the recognition

rates of these actions in 3BT and T5s; reduce the recognition rates of these actions when
40



700
600
500
400

- 300
L 200
- 100

Lo
700
600
500
400

- 300

L 200

- 100
0

e R R - NN - - =] T_ — ,.ﬁxu.. R R R - - - - - R - m.,._vxu..
=T = = I = == == = = =] m _Du,“vw. R R T R T R BT T m _Du,“vw.
[ T R I R R R A I MWD ﬂ.u%ﬁw S|looo o oo oo oo oo BWD o &
(=]
.m =t = —
el T T e T T e T Y e T e T e O e Y = (== .n_nm,.&- H|loooococoococooo oo = = .n_nm,.&-
o =
= == _n_uﬂ.w._m.. == SR _n_uﬂ.w._m..
= =]
= === w = ===
5 A 2 A
H .H_D_n_.n_u.m_-l .M (=1 .U.U_U.Uu.m_-
.= 2 o
e - oo o o = o oo o o 8
Q i 1] & o /na\nﬂ =
T = 2 7 o
O = R = | w (=R~ 8
E 5 ay 3
O G
g gt | o B
8 = (=R == _n_d.._um_. = =} (=R == _n_d.._um_.
n m =
=] = o oo oo D:%_uw_- m| = o o o o
T 5 %
g = === Du;.__mm_- 5 = === Du;.__mm_-
8 2 mw
17} c e (=1 =
2 & g 5 g
e L= e R e R = 4 == ==
e m %> ) %>
= o Ny : = RN A
B = o B ooo oo onme oo o oy G = = R A - G
—
(o8 [ B |
o olilimomwmao ooocooo o G [ T T T T Y T T T T T T T G
a T T T T T T T T T T T T T T T T T T T T T T T T T T T T
.2 — M W [P B N < B R B B N L I T R T ] — M W [P B N < B R B B N L I T R T ]
= F3EEFIFEIIdIIILADLD F3EEFIFEIIdIIILADLD
m =08 =2nlL =08 =2nlL

(b)
Figure 4.3 Confusion matrix for (a) the first fusion method (b) the second fusion
method
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Classified label
Figure 4.3 shows the confusion matrices of fusion methods. In each matrix, the

horizontal axis is the classified label, and vertical axis is the true label. The values in the
matrix indicate the frame level output classification results. For example, assume the



system outputs 5 classification results for an action sequence, and these results are added
into the matrix. A higher value is indicated by a darker colour. Comparing the first fusion
method, Figure 4.3 (a), to the second fusion method, Figure 4.3 (b), some actions are
sometimes classified incorrectly in the first fusion method. For example, actions A1l to
A13 are sometimes classified as other interactive actions in the first fusion method.
Conversely, the second fusion method has fewer errors of this kind. However, the action
“stand” (A08) is often classified as the action “sit” (A07) in both methods. This may be
because in the last moment of the action “stand” (A08), the target person is in the stand
position, and the system starts predicting that the target person is going to sit down. This
causes the action “stand” (A0S8) to be classified as “sit” (A07). Figure 4.4 (c) shows the

classification results of the action “stand”.

Carry object
Ground Truth Drink sit
Drink stand
. Eat sit
Spatial Feature Result Eat stand

Walk away from each other
Walk toward each other

Temporal Feature Result
Structural Feature Result
First Fusion Result

Second Fusion Result

20

Ground Truth

Spatial Feature Result
Temporal Feature Result
Structural Feature Result

First Fusion Result

Hu
Kick

Play with a phone
Read

Sit

Stand

Use a laptop
Walk horizontal

Walk straight
Unknown

Carry object
Drink sit
Drink stand
Eat sit

Eat stand

Hu

Kic

Play with a phone
Read

Sit

Stand
Use a laptop

Walk horizontal
Walk straight
Unknown

Walk away from each other
Walk toward each other

Second Fusion Result

20 0 60 80 98
Frame Number

(b)

Carry object
Drink sit
Drink stand
Eat sit

Eat stand

Walk away from each other
Walk toward each other

Ground Truth

Spatial Feature Result

Temporal Feature Result Hu
Kick

Structural Feature Result :andw'th a phone
Sit
Stand
Use a laptop
Walk horizontal

Walk straight
Unknown

First Fusion Result

Second Fusion Result

20 30 40 50 60 70 78
Frame Number

(©
Figure 4.4 Classification results of the online system (a) action “sit” (b) action
“walk toward each other” (c) action “stand”

Figure 4.4 shows the classification results of the online human action recognition
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system. The horizontal axis shows the frame numbers of a sequence. The vertical axis
shows ground truth, spatial feature classification result, temporal feature classification
result, structural feature classification result, classification result of the first fusion
method, and classification result of the second fusion method. Each action is represented
by a colour.

Figure 4.4 (a), (b) and (c) show the classification results of actions “sit”, “walk
toward each other” and “stand”. Some output results using spatial features, temporal
features and structural features are either unknown or classified incorrectly.
Additionally, although the recognition rates of spatial features are high, the output results
still have too many unknown classification results. However, by using the first and
second fusion methods, some of these unknown items can be correctly classified. From
Figure 4.3 (b) and (c), the classification results of the first fusion method sometimes still
have incorrect classification results because the LSTM classifiers trained by temporal
features and structural features affect the classification results and reduce the recognition

rates.

4.5 Multi-Human Action Classification Results

Figure 4.5 shows the multi-human action classification results of the online human
action recognition system using the same format as Figure 4.4. Figure 4.5 (a) shows a
sequence containing two actions, “walk toward each other” and “carry object”. The
recognition rate of the first fusion method is 90.90%, and that of the second fusion
method is 100.00%. Figure 4.5 (b) shows a sequence containing three actions, “walk
horizontal”, “sit”, and “drink sit”. The recognition rate of the first fusion method is
61.90%, and that of the second fusion method is 90.48%. In these examples, the second
fusion method is better than the first fusion method. This is because the LSTM classifier
trained by spatial features is more reliable than the other two classifiers and the LSTM
classifiers trained by temporal features and structural features reduce the recognition
rates of the first method. Figure 4.5 (c) shows a sequence that contains three action,
“walk toward each other”, “kick”, and “walk away from each other”. The recognition
rate of the first fusion method is 87.50%, and that ofthe second fusion method is 62.50%.
In this example, the first fusion method is better than the second fusion method. This is

because the second fusion method completely trusts the LSTM classifier trained by
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spatial features; however, if that classifier recognises incorrectly, the output results lead
the fusion to an incorrect classification result.

Although, the second fusion method has better recognition rates when sequences
contain only one action class, the first fusion method sometimes has better recognition
rates for sequences containing multiple actions. Overall, this research recommends using

the second fusion method because it performs better in most cases.
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Figure 4.5 Multi-action classification results of the online system (a) actions “walk
toward each other” and “carry object” (b) actions “walk horizontal”, “sit”, and “drink
in sit position” (c) actions “walk toward each other”, “kick”, and “walk away from
each other”
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Chapter 5 Conclusions and Future Works

5.1 Conclusions

This research proposes a vision-based online human action recognition system that
can recognise human action under M-Video circumstances. The proposed system
comprises five stages: human detection, human tracking, feature extraction, action
classification, and fusion. Moreover, the system uses three types of input information
for human action recognition: colour intensity, short-term dynamic information, and
skeletal joints.

We adopted a 2D human pose estimator, OpenPose [Cao19], to detect humans and
Deep SORT [Wojl7] to track humans. We extracted three types of features, spatial-based
features, temporal-based features, structural-based features, to analyse human actions.
These three types of features were input into their corresponding LSTM networks for
human action classification. Finally, we applied fusion methods to integrate the
classification results of the LSTM networks to determine the final classification of the
human action. In this study, we proposed a TE-LSTM network, composed of a TE
network and a deep LSTM network. Experimental results show that the TE-LSTM
network can increase the recognition rate based on structural features.

We also established the CVIU dataset, an M-Video dataset containing 11 types of
single human actions and 5 types of interactive human actions. The CVIU dataset was
used to train and to evaluate the proposed system. Experimental results showed that each
type of feature has a suitable network among twelve kinds of LSTM networks. The two-
layer BiILSTM network can obtain a 96.64% recognition rate of human action from
spatial features. The three-layer BILSTM network can obtain an 81.87% recognition rate
of human action from temporal features. The TE-LSTM network with type 5 can obtain
a 68.10% recognition rate of human action from structural features. Finally, the

recognition rate of human action after integration was 96.84%.
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5.2 Future Works

The CVIU dataset currently contains only 16 human action classes. However, the
CVIU dataset could be extended in terms of both the amount of data and the number of
action classes. This would let the system recognise more human actions in the future.
This research only trained and evaluated twelve kinds of LSTM networks in the action
classification stage. However, LSTM networks can be modified to more kinds of
structures, such as by adding dropout layers and more fully connected layers. Modified
LSTM networks might obtain a better recognition rate than the twelve networks we
tested. The highest recognition rate of the LSTM networks trained by structural features
was only 68.10%. Data augmentation methods could be implemented to enlarge the
training data to help LSTM networks trained by structural features to perform better. In
the evaluation stage, the threshold values used to filter out low output probabilities for
action classification are currently non-automatic. An automatic threshold adjustment
mechanism could be explored to get a more precise threshold value for the system.

This study used LSTM networks to classify human actions in the action
classification stage. However, LSTM networks have many parameters because of the
three gates that exist in an LSTM cell. Having too many parameters can cause problems,
such as occupying too much memory, reducing the execution speed, and slowing down
the network training. The recently proposed Gate Recurrent Unit (GRU) [Chul4]
networks, another kind of RNN network, contain only two gates in a GRU cell.
Therefore, the number of parameters in GRU networks is less than that of LSTM.
Networks with fewer parameters might use less memory, execute quicker, and train
faster. Consequently, GRU networks may be considered to replace LSTM networks in
the proposed system.

Currently, the developed system only applies to indoor spaces. The system could
be developed to apply to more diverse spaces, such as outdoor spaces. Compared with
indoor spaces, outdoor spaces are more complicated because the illumination and
environments are uncontrollable. However, we hope the proposed system could be

enhanced to recognise human actions in both indoor and outdoor spaces in future.
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