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Abstract Justicia procumbens is a traditional Taiwanese herbal
remedy used to treat fever, pain, and cancer. Justicidin A, iso-
lated from Justicia procumbens, has been reported to suppress
in vitro growth of several tumor cell lines as well as hepatoma
cells. In this study, justicidin A activated caspase-8 to increase
tBid, disrupted mitochondrial membrane potential (Dwm), and
caused the release of cytochrome c and Smac/DIABLO in Hep
3B and Hep G2 cells. Justicidin A also reduced Bcl-xL and in-
creased Bax and Bak in mitochondria. Caspase-8 inhibitor (Z-
IETD) attenuated the justicidin A-induced disruption of Dwm.
Growth of Hep 3B implanted in NOD-SCID mice was sup-
pressed significantly by oral justicidin A (20 mg/kg/day). These
results indicate that justicidin A-induced apoptosis in these cells
proceeds via caspase-8 and is followed by mitochondrial disrup-
tion. Supplementary materials are available at http://myweb.
ncku.edu.tw/~a725/.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Human hepatocellular carcinoma (HCC) is the fifth most

frequent cancer and is the third most common cause of can-

cer-related death worldwide [1,2]. In Taiwan, HCC is also a

leading malignant neoplasm [3]. Unfortunately, it does not re-

spond well to chemotherapy and has a poor prognosis [4,5]. To

develop a more effective chemotherapeutic agent for this dis-
Abbreviations: HCC, hepatocellular carcinoma; PBMC, peripheral
blood mononuclear cells; Smac/DIABLO, second mitochondria-
derived activator of caspase/direct IAP binding protein with low pI;
PARP, poly(ADP-ribose) polymerase; DFF, DNA fragmentation
factor; Dwm, mitochondrial membrane potential; XIAP, X-linked
apoptosis-inhibiting protein; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide; mAB, monoclonal antibody; pAB,
polyclonal antibody
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ease, we concentrated our efforts on natural compounds tradi-

tionally used to treat the disease. Justicia procumbens (J.

procumbens) is a traditional herbal remedy in Taiwan for fever,

pain, and cancer [6,7]. Justicidin A, purified from a methanolic

extract of J. procumbens, has various biological activities

including suppression of tumor cell growth [8,9] and release

of TNF-a [10]. The purpose of present study was to determine

whether apoptosis is stimulated by justicidin A-treatment of

human HCC. Two major apoptotic pathways (intrinsic and

extrinsic) have been concluded. The intrinsic apoptotic path-

way operates via mitochondria [11]. The extrinsic apoptotic

pathway activates caspase-8 and its downstream regulators

[12]. The results of this study reveal that justicidin A induces

both intrinsic and extrinsic apoptotic pathways in HCC cells

since both caspase-8 and mitochondria are affected. Induction

of apoptosis is characterized by phosphatidylserine external-

ization, accumulation of sub-G1 cells, and DNA fragmenta-

tion. Activation of caspase-8 increases the amount of tBid to

change mitochondrial membrane potential (Dwm), which in

turn causes the release of cytochrome c and second mitochon-

dria-derived activator of caspase/direct IAP binding protein

with low pI (Smac/DIABLO) from mitochondria to activate

caspase-9 and caspase-3. The increase of Bax and Bak and de-

crease of Bcl-xL in mitochondria further promote the process

of apoptosis. The cytotoxicity of justicidin A is also effective

in vivo.
2. Materials and methods

2.1. Materials
Justicidin A was isolated from J. procumbens plants [9]. DiOC6(3)

was obtained from Molecular Probes (Eugene, OR). Anti-cytochrome
c mouse monoclonal antibody (mAB) and Annexin V–FITC were pur-
chased from BD Pharmingen (San Diego, CA). Anti-caspase-3 mouse
mAB and anti-Smac/DIABLO rabbit polyclonal antibody (pAB) were
purchased from IMGENEX (San Diego, CA). Anti-caspase-8 mouse
mAB and anti-poly(ADP-ribose) polymerase (PARP) rabbit pAB were
purchased from Cell Signaling Technology (Beverly, MA). Anti-
caspase-9 mouse mAB was purchased from Upstate Biotechnology
(Lake Placid, NY). Anti-receptors for activated C-kinase (RACK1)
mouse mAB was purchased from BD Transduction Laboratories (Lex-
ington, KY). Z-IETD, Z-LEHD, anti-Bax and anti-Bcl-xL mouse
mAB, anti-Bak, anti-DNA fragmentation factor (DFF) 45 and anti-
DFF40 rabbit pAB, and goat anti-mouse conjugated HRP secondary
antibody were purchased from Santa Cruz Biotech (Santa Cruz, CA).
blished by Elsevier B.V. All rights reserved.
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Goat anti-rabbit conjugated HRP secondary antibody was purchased
from Amersham Pharmacia Biotech (Quebec, Canada). Other reagents
were purchased from Sigma (St. Louis, MO).

2.2. Cell cultures
Human HCC (Hep 3B and Hep G2 cells), and Chang liver cells from

American Type Culture Collection (ATCC, Rockville, MD), were
maintained in complete Dulbecco’s modified Eagle medium (DMEM;
GIBCO BRL, Grand Island, NY). Human peripheral blood mononu-
clear cells (PBMC) were isolated from healthy donors’ whole blood
(Tainan Blood Bank Center, Tainan, Taiwan) by centrifugation over
a Ficoll-Paque (Amersham Pharmacia, Uppsala, Sweden) density gra-
dient at 400 · g for 30 min in a Sorvall RT6000B (Du Pont, Wilming-
ton, DE) [13]. The cells collected at the interface were washed thrice
with serum-free RPMI-1640 (GIBCO BRL, Grand Island, NY) and
subsequently resuspended in complete DMEM.

2.3. Cell viability assay
Cytotoxicity was determined using a modified 3-(4,5-dimethylthia-

zol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay
[13]. Cells on 96-well plates (Nunc, Roskilde, Denmark) were treated
with different concentrations of the test agent for 6 days. After addi-
tion of 10 ll MTT to a final concentration of 0.5 mg/ml, cells were
incubated at 37 �C for 4 h. After adding 100 ll of 10% SDS/0.01 N
HCl, cells were left overnight at 37 �C. The absorbance of each well
was measured at 590 nm in a Multiscan photometer (MRX II, Dyna-
tech, McLean, VA).

2.4. Flow cytometric detection of phosphatidylserine exposure and cell

cycle distribution
Cells were trypsinized, and resuspended in HEPES buffer solution

(HBS) containing 1.25% (v/v) of Annexin V–FITC to stain phosphati-
dylserine on the cell surface [14]. Stained cells were analyzed in a FAC-
Scan flow cytometer (Becton Dickinson, Mountain View, CA) [15].
For cell cycle distribution analysis, cells were washed with HBS and
resuspended in 70% ethanol at 4 �C. After centrifugation at 800 · g
for 10 min, cells were resuspended in HBS containing 40 lg/ml propi-
dium iodide (PI) and 0.1% NP-40 for flow cytometric analysis [16,17].

2.5. Analysis of DNA fragmentation
Extraction and electrophoresis of DNA were performed as described

[13]. Cells were incubated with lysis buffer (10 mM Tris–HCI [pH 7.6],
20 mM EDTA, and 1% NP-40) for 20 min at 37 �C. After centrifuga-
tion, the supernatants were incubated with 50 ll of RNase A (20 mg/
ml) and 20 ll of SDS (10%) at 56 �C for 2 h. Proteinase K (35 ll of
20 mg/ml) was mixed with the cell lysates and incubated for another
2 h at 37 �C. Precipitated DNA fragments were resuspended in 15 ll
of Tris–EDTA buffer, and separated by electrophoresis on a 1% (w/
v) agarose gel in TBE buffer. The patterns of DNA ladders were exam-
ined after staining with ethidium bromide and under UV light.

2.6. Measurement of Dwm
Change in Dwm was determined by flow cytometry using the mito-

chondria-sensitive dye rhodamine 123 in the dark [16,18]. After treat-
ment, cells were stained with 5 lM rhodamine 123 for 30 min. After
mixing with 2.5 lg/ml of PI, the stained cells were subjected to flow
cytometry, and the data were analyzed using CellQuest software.
Change of Dwm was also determined by laser scanning confocal
microscopy (Leica TCS-SP2, Germany) [16,19]. Cells were seeded in
6-well plates containing methanol-sterilized glass cover slips. After
treatment, the cells were stained with 5 lM rhodamine 123 at 37 �C,
washed twice with PBS at room temperature, fixed with 4% parafor-
maldehyde for 15 min, and then examined using a Leica TCSNT laser
scanning confocal imaging system coupled to a Leica DMRBE micro-
scope with a Leica 630 fluotar objective.

2.7. Subcellular fractionation and Western blot analysis
Whole cells (1 · 106) were mixed with 200 ll of lysis buffer and then

centrifuged at 15000 · g for 10 min [16]. The supernatant was used as
total protein for immunoblotting. The cytosolic, mitochondrial, and
nuclear proteins were prepared as previously reported [16,20,21].
Briefly, harvested cells (1 · 106) were resuspended in TSE buffer
(10 mM Tris, 0.25 M sucrose, and 0.1 mM EDTA [pH 7.4]), and
homogenized with 10 strokes in a Dounce homogenizer (Glas-Col,
Terre Haute, IN) using a Teflon pestle. After removing the cell debris
by centrifuging the homogenates at 750 · g at 4 �C for 30 min, the
supernatants were centrifuged at 12000 · g at 4 �C for 30 min. The
supernatants were centrifuged again at 100000 · g for another 1 h.
The resulting supernatants were used as cytosolic fractions, and the
resulting pellets were lysed with lysis buffer and used as mitochondrial
fractions. For nuclear extract preparation, cells (1 · 107) were lysed in
400 ll of buffer A (10 mM HEPES [pH 7.9], 5 mM MgCl2, 10 mM
KCl, 3 mM Na3VO4, 10 mM NaF, 0.5 mM dithiothreitol, 0.5 mM
phenylmethylsulfonyl fluoride, and 2 lg/ml of leupeptin, antipain,
aprotinin, and pepstatin A) on ice for 20 min. After centrifugation at
11000 · g for 20 s at 4 �C, the pellets were resuspended in 60 ll of buf-
fer B (20 mM HEPES, pH 7.9, 1.5 mM MgCl2, 420 mM NaCl, 0.2 mM
EDTA, 25% glycerol, 1 mM Na3VO4, 10 mM NaF, 0.5 mM dithio-
threitol, 0.5 mM phenylmethylsulfonyl fluoride, and 1 lg/ml each of
leupeptin, antipain, aprotinin, and pepstatin A) for 15 min on ice with
occasional mixing. Nuclear debris was removed by centrifugation
again at 12000 · g for 15 min at 4 �C. All isolated proteins were stored
at �70 �C before immunoblotting analysis [22].

2.8. Animal study
NOD.CB17-PRKDCÆSCIDæ/J (NOD-SCID) mice were bred and

maintained at the Animal Center of National Cheng Kung University
(NCKU, Tainan, Taiwan) in a specific pathogen-free environment.
Mice at 6–7 weeks of age were used in the experiments as described
previously [16]. Food and water were provided ad libitum. Tumor vol-
ume was measured using calipers (2–3 times/week) [23].

2.9. Statistical analysis
All of the experimental data are expressed as means ± S.E.M. Differ-

ences in tumor volumes were determined by Student’s t test using the
Minitab (version 10.2) software package. We assigned statistical signif-
icance if P < 0.05.
3. Results

3.1. Growth inhibition and apoptosis of justicidin A-treated cells

Low dosages of justicidin A suppressed the viability of HCC

Hep 3B and Hep G2 cells, and the IC50 at day 6 was

0.048 ± 0.020 and 0.052 ± 0.050 lM, respectively. The IC50

of justicidin A for non-malignant Chang liver cells was

0.95 ± 0.12 lM, which is at least 10-fold higher than the IC50

of justicidin A for HCC cells. Human PBMC were much more

resistant to justicidin A treatment with an IC50 of 23 ± 1 lM.

To examine the possible mechanism of justicidin A on cell via-

bility, three parameters of apoptosis (exposure of phosphati-

dylserine, cell cycle redistribution and DNA fragmentation)

were analyzed. As shown in Fig. 1A, the percentage of Annex-

in V–FITC positive cells were increased significantly in a dos-

age- and time-related manner. Dose-related elevations in the

sub-G1 fraction of both tumor cells were also observed (Sup-

plementary Fig. 1). Justicidin A also caused time- and dose-

related enhancement of apoptotic DNA fragmentation in these

cells (data not shown).
3.2. Activation of caspases and involvement of mitochondria in

justicidin A-induced apoptosis

The process of apoptosis involves a cascade of proteolytic

activity, much of it carried out by caspases [21]. In this study,

both procaspase-8 (Fig. 1B) and procaspase-9 (Supplementary

Fig. 2) were cleaved into their active forms in a time-related

manner. Cleavage of their downstream molecule procaspase-

3 was also revealed (Supplementary Fig. 2). Since PARP and

DFF are substrates of activated caspase-3 [24–26], increase



Fig. 1. Induction of apoptosis and expression of caspase-8, cytochrome c and Smac/DIABLO in hepatoma cells in response to justicidin A.
Externalization of phosphatidylserine in Hep 3B and Hep G2 cells (A). After treatment with the indicated concentrations of justicidin A for 48 h or
with 1 lM of justicidin A for the indicated time periods, cells (2 · 105) stained with Annexin V–FITC were analyzed by flow cytometry. The
percentages in the figure indicate the proportion of apoptotic cells with externalization of phosphatidylserine. Activation of caspase-8, and release of
cytochrome c and Smac/DIABLO in Hep 3B and Hep G2 cells (B). Total proteins from justicidin A-treated cells were subjected to Western blot
analysis to determine the activation of procaspase-8 by using anti-caspase-8 mouse mAB. RACK1 was served as a loading control. Blots of the
cytosol- and mitochondria-enriched fractions were used to demonstrate the translocation of cytochrome c and Smac/DIABLO using anti-cytochrome
c mouse mAB or anti-Smac/DIABLO rabbit pAB. Relative protein expression is shown at the bottom of each panel, with control levels arbitrarily set
to 1. JA, justicidin A.
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in the cleavage PARP and nuclear DFF40 (Supplementary

Fig. 2) displayed the enzymatic activity of caspase-3. The

involvement of caspase-8 and caspase-9 in the process of apop-

tosis was confirmed by showing that the presence of caspase-8

inhibitor (Z-IETD) or caspase-9 inhibitor (Z-LEHD) reduced

the number of justicidin A treated cells in the sub-G1 phase

(Supplementary Fig. 3).

Activation of caspase-9 (Supplementary Fig. 2) implied the

involvement of mitochondria in justicidin A-induced apopto-

sis. Maintenance of Dwm is important for normal function

and survival of cells [27]. Changes of Dwm can cause the re-

lease of apoptogenic proteins. In this study, the time-related

release of cytochrome c and Smac/DIABLO from mitochon-

dria to cytosol (Fig. 1B) further demonstrated the pivotal role

of mitochondria in justicidin A-induced apoptosis. Con-

versely, mitochondrial cytochrome c decreased gradually in

both cells (Fig. 1B). Similar patterns of increased cytosolic

and decreased mitochondrial Smac/DIABLO were observed

(Fig. 1B). Anti-X-linked apoptosis-inhibiting protein (XIAP),

an antagonist of caspase-3 and caspase-9 [28], was reported

to be antagonized by cytosolic Smac/DIABLO [29]. Decrease

in XIAP expression (data not shown) may therefore favor

the increase in caspase-9 and -3 activities (Supplementary

Fig. 2). Involvement of mitochondria was also confirmed by

changes in Dwm upon justicidin A stimulation. A dose- and

time-related decrease in the intensity of rhodamine 123

fluorescence was detected in the mitochondria of justicidin

A-treated Hep 3B cells (Supplementary Fig. 4). A similar

time-related decrease in fluorescence intensity was observed

in Hep G2 cells (data not shown). Confocal microscopy also

showed that justicidin A induced Dwm. Decrease in fluores-

cence emission was found in both tumor cells after justicidin

A treatment (Fig. 2A).

Fig. 2A reveals the relationship between mitochondria and

caspase-8. In both cells, Z-IETD (an inhibitor of caspase-8)

alleviated the justicidin A-induced decrease in mitochondrial

fluorescence signals (Fig. 2A) and justicidin A-induced in-

crease in the number of apoptotic cells in the sub-G1 fraction

(Supplementary Fig. 3). Similar results were observed when

cells were treated with justicidin A plus cyclosporin A, a per-

meability transition pore inhibitor that blocks the release of

cytochrome c from mitochondria (Fig. 2A).

3.3. Involvement of Bcl-2 family in justicidin A-induced

apoptosis

Members of Bcl-2 family regulate apoptosis by interacting

with mitochondria [28]. Bcl-2 and Bcl-xL protect against mito-

chondrial dysfunction and therefore inhibit apoptosis. In con-

trast, Bid, Bax, and Bak induce Dwm and thus promote

apoptosis. To test the involvement of the proteins of the Bcl-

2 family in justicidin A-induced apoptosis, total cell lysates,

and cytosolic and mitochondrial fractions of justicidin A-

treated tumor cells were prepared. In Fig. 2B, justicidin A

significantly decreased total and mitochondrial Bcl-xL. Trans-

location of Bax was also observed in these two cells after

treatment of justicidin A (Fig. 2B). The expression of cytosolic

Bax decreased and the mitochondrial Bax increased (Fig. 2B).

In Hep 3B cells, mitochondrial Bak expression increased a

small amount, whereas, in Hep G2 cells it increased markedly

(Fig. 2B). Cytosolic Bid was decreased after treatment with

justicidin A (Fig. 2B). The translocation of the tBid fragment

to mitochondria began at 6 h of justicidin A treatment, kept
increasing between 12 and 24 h, and peaked at 72 h in Hep

3B cells or at 48 h in Hep G2 cells (Fig. 2B).

3.4. Tumor growth in mice

To examine the antitumor effect of justicidin A in vivo,

Hep 3B cells were implanted in mice before they were fed jus-

ticidin A (20 mg/kg/day) for 60 consecutive days. As shown

in Fig. 3, the tumors were sensitive to justicidin A, and their

growth was halted throughout the period of justicidin A

administration.
4. Discussion

Our experimental findings suggest the following signaling

cascades in justicidin A-treated HCC. At 6 h of justicidin A

treatment, activation of caspase-8 (Fig. 1B) triggers the cleav-

age of Bid into tBid and causes the translocation of tBid to

mitochondria (Fig. 2B). Mitochondrial tBid may oligomerize

with the mitochondrial Bax (Fig. 2B) and Bak (Fig. 2B) (both

proteins first increase in the mitochondria at 6 h of justicidin A

treatment) to damage Dwm (Fig. 2A and Supplementary

Fig. 4) and result in releasing cytochrome c and Smac/DIA-

BLO into the cytosol at a later time point (at 24 h in Hep 3B

and 48 h in Hep G2 cells) (Fig. 1B). Since Bcl-xL can bind to

Bax and prevent Bax insertion into the outer membrane of

mitochondria [30], the decrease in total and mitochondrial

Bcl-xL (Fig. 2B) promotes the changes of Dwm. The released

cytochrome c may contribute to the formation of apoptosomes

in the cytosol to activate caspase-9 (Supplementary Fig. 2).

Decrease in XIAP (data not shown), because of interaction

with the cytosolic Smac/DIABLO, may further increase apop-

tosome formation and therefore facilitate caspase-9 activation

[28]. The activation of caspase-8 or caspase-9 subsequently

activates caspase-3 (Supplementary Fig. 2). The activated cas-

pase-3 then cleaves PARP (Supplementary Fig. 2). Since

PARP participates in DNA repair mechanism [31,32], the in-

crease in cleaved PARP disables the function of DNA repair

in both cells. The activated caspase-3 also cleaves DFF45

(Supplementary Fig. 2). Since DFF45 can bind DFF40 to pre-

vent DFF40-mediated DNA fragmentation [33], the decrease

in DFF45 allows release of DFF40 into the nucleus. The in-

crease in nuclear DFF40 (Supplementary Fig. 2) may result

in the formation of DNA ladders in justicidin A-treated

HCC (data not shown). Greater increase in the level of cleaved

PARP than nuclear DFF40 (Supplementary Fig. 2) in Hep 3B

cells suggests that PARP is the more important determinant of

DNA fragmentation in these cells. The small increase in pro-

apoptotic Bak (Fig. 2B) in Hep 3B cells suggests that caspase

activation and Bax-dependent release of mitochondrial apop-

togenic proteins are sufficient to increase the level of cleaved

PARP and nuclear DFF40 (Supplementary Fig. 2) and thereby

to provoke Hep 3B cell death. Our results indicate that Hep

G2 but not Hep 3B cells express Bcl-2 (data not shown). Since

Bcl-2 protein has been reported to inhibit caspase-8 activity

[34,35], the greater increase in cleaved caspase-8 in Hep 3B

cells (Fig. 1B) may be explained. Greater cleavage of procas-

pase-8 (Fig. 1B) may result in more predominant increase in

mitochondrial tBid and tBid-induced translocation of Bax

(Fig. 2B), and thereby lead to the greater increase in cleaved

caspase-3 (Supplementary Fig. 2) in Hep 3B cells. Recently,

Bak has been reported to be a mitochondrial membrane pro-



Fig. 2. Changes of Dwm and expressions of proteins involved in mitochondria-dependent apoptosis induced by justicidin A treatment. Inhibitory
effects of Z-IETD or cyclosporin A on Dwm and on the percentage of cells in the sub-G1 fraction were evaluated respectively by confocal microscopy
and flow cytometry (A). In the experiment, cells were pretreated with 20 lM of Z-IETD or 10 lM of cyclosporin A for 4 h prior to the addition of
justicidin A (1 lM) for 30 h. Cells were either stained with rhodamine 123 for confocal microscopy or stained with PI for flow cytometry. Expression
of death related proteins in justicidin A-treated hepatoma cells (B). Blots were developed with anti-Bcl-xL or anti-Bax mouse mAB, or with anti-Bak
or anti-Bid rabbit pAB.
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Fig. 3. Suppression of tumor growth in NOD-SCID mice. Hep 3B
cells (3.2 · 105 cells/mice) were implanted s.c. into the flanks of mice on
day 0. On day 4, the animals were randomly assigned to two groups.
The mice in the treatment group (s, n = 5) were fed justicidin A
(20 mg/kg/day), and the mice in the control group (d, n = 5) were fed
vehicle (0.05% dimethyl sulfoxide in normal saline) for another 60 days
until the end of the experiment. The growth of tumors was recorded.
An arrowhead indicates the starting time of justicidin A treatment.
� indicates significantly different from the corresponding control
group, P < 0.05.
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tein. In this study, mitochondrial Bak expression increases

upon justicidin A treatment in HCC cells. Similar result was

also reported in Hep G2 cells [36]. The predominant increase

in mitochondrial Bak in Hep G2 than in Hep 3B cells may

be due to the greater increase in total Bak protein expression

in Hep G2 cells upon justicidin A stimulation (data not

shown). However, the mitochondrial Bak in Hep G2 cells

might not all be in oligomerized form for cytochrome c release

(Fig. 1B). Of note, the control of caspase-8 inhibitor (Z-IETD)

on Dwm (Fig. 2A) indicates that caspase-8 is an upstream reg-

ulator of mitochondria in justicidin A-induced apoptosis. The

total blockage of justicidin A-induced apoptosis by either

cyclosporine A (Fig. 2A) or caspase-9 inhibitor (Z-LEHD)

(Supplementary Fig. 3) demonstrates that this apoptotic pro-

cess is mitochondria- and caspase-9-dependent, and the direct

activation of caspase-3 by caspase-8 only plays a minor role in

justicidin A-induced apoptosis.

Both the intrinsic and extrinsic pathways were induced in

the HCC cells since both caspase-8 (Fig. 1B) and mitochon-

dria (Fig. 2A and Supplementary Fig. 4) were affected by jus-

ticidin A. Our previous experiments indicated that only the

intrinsic pathway is stimulated by justicidin A in colorectal

carcinoma cells [16], in which, caspase-8 was not activated

in either HT-29 or HCT 116 cells. The justicidin A-induced

apoptotic pathway in colorectal carcinoma cells begins with

the suppression of Ku70, which causes the translocation of

Bax to mitochondria. The change of Dwm causes the release

of apoptogens (cytochrome c and Smac/DIABLO) to further

activate their downstream regulators. In contrast, in these

HCC cells, alteration of Ku70 expression was not detected

(data not shown).

In conclusion, justicidin A inhibits the growth of HCC cells

in vitro and in vivo. Induction of apoptosis is the result of jus-

ticidin A cytotoxicity. The lower sensitivity of PBMC to jus-

ticidin A illustrates that this natural compound, justicidin A,

is selective against malignant cells.
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Appendix A. Supplementary data

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.febslet.2006.

04.085.
References

[1] Parkin, D.M., Bray, F., Ferlay, J. and Pisani, P. (2001) Estimating
the world cancer burden: Globocan 2000. Int. J. Cancer 94, 153–
156.

[2] Llovet, J.M., Burroughs, A. and Bruix, J. (2003) Hepatocellular
carcinoma. Lancet 362, 1907–1917.

[3] Beasley, R.P., Hwang, L.Y., Lin, C.C. and Chien, C.S. (1981)
Hepatocellular carcinoma and hepatitis B virus. A prospective
study of 22,707 men in Taiwan. Lancet 2, 1129–1133.

[4] Di Bisceglie, A.M. (2002) Epidemiology and clinical presentation
of hepatocellular carcinoma. J. Vasc. Interv. Radiol. 13, S169–
S171.

[5] Zhu, A.X. (2003) Hepatocellular carcinoma: are we making
progress? Cancer Invest. 21, 418–428.

[6] Kan, W.S. (1981) Pharmaceutical Botany, Natl. Res. Inst.
Chinese Med., Taipei, Taiwan, p. 513.

[7] Hsu, H.Y. (1982) Treating Cancer with Chinese Herbs, Oriental
Healjing Arts Institute, Los Angeles, p. 238.

[8] Day, S.H., Chiu, N.Y., Won, S.J. and Lin, C.N. (1999) Cytotoxic
lignans of Justicia ciliata. J. Nat. Prod. 62, 1056–1058.

[9] Day, S.H., Lin, Y.C., Tsai, M.L., Tsao, L.T., Ko, H.H., Chung,
M.I., Lee, J.C., Wang, J.P., Won, S.J. and Lin, C.N. (2002) Potent
cytotoxic lignans from Justicia procumbens and their effects on
nitric oxide and tumor necrosis factor-alpha production in mouse
macrophages. J. Nat. Prod. 65, 379–381.

[10] Tsao, L.T., Lin, C.N. and Wang, J.P. (2004) Justicidin A inhibits
the transport of tumor necrosis factor-alpha to cell surface in
lipopolysaccharide-stimulated RAW 264.7 macrophages. Mol.
Pharmacol. 65, 1063–1069.

[11] Green, D.R. and Reed, J.C. (1998) Mitochondria and apoptosis.
Science 281, 1309–1312.

[12] Roth, W. and Reed, J.C. (2002) Apoptosis and cancer: when BAX
is TRAILing away. Nat. Med. 8, 216–218.

[13] Wang, B.J., Won, S.J., Yu, Z.R. and Su, C.L. (2005) Free radical
scavenging and apoptotic effects of Cordyceps sinensis fraction-
ated by supercritical carbon dioxide. Food Chem. Toxicol. 43,
543–552.

[14] Perkins, C.L., Fang, G., Kim, C.N. and Bhalla, K.N. (2000) The
role of Apaf-1, caspase-9, and bid proteins in etoposide- or
paclitaxel-induced mitochondrial events during apoptosis. Cancer
Res. 60, 1645–1653.

[15] Zheng, T.S., Hunot, S., Kuida, K. and Flavell, R.A. (1999)
Caspase knockouts: matters of life and death. Cell Death Differ.
6, 1043–1053.

[16] Lee, J.C., Lee, C.H., Su, C.L., Huang, C.W., Liu, H.S., Lin, C.N.
and Won, S.J. (2005) Justicidin A decreases the level of cytosolic
Ku70 leading to apoptosis in human colorectal cancer cells.
Carcinogenesis 26, 1716–1730.

[17] Nakashio, A., Fujita, N., Rokudai, S., Sato, S. and Tsuruo, T.
(2000) Prevention of phosphatidylinositol 3 0-kinase-Akt survival
signaling pathway during topotecan-induced apoptosis. Cancer
Res. 60, 5303–5309.

[18] Mathur, A., Hong, Y., Kemp, B.K., Barrientos, A.A. and
Erusalimsky, J.D. (2000) Evaluation of fluorescent dyes for the
detection of mitochondrial membrane potential changes in
cultured cardiomyocytes. Cardiovasc. Res. 46, 126–138.

[19] Yang, J., Liu, X., Bhalla, K., Kim, C.N., Ibrado, A.M., Cai, J.,
Peng, T.I., Jones, D.P. and Wang, X. (1997) Prevention of

http://dx.doi.org/10.1016/j.febslet.2006.04.085
http://dx.doi.org/10.1016/j.febslet.2006.04.085


C.-L. Su et al. / FEBS Letters 580 (2006) 3185–3191 3191
apoptosis by Bcl-2: release of cytochrome c from mitochondria
blocked. Science 275, 1129–1132.

[20] Watabe, M., Machida, K. and Osada, H. (2000) MT-21 is a
synthetic apoptosis inducer that directly induces cytochrome c
release from mitochondria. Cancer Res. 60, 5214–5222.

[21] Earnshaw, W.C., Martins, L.M. and Kaufmann, S.H. (1999)
Mammalian caspases: structure, activation, substrates, and
functions during apoptosis. Annu. Rev. Biochem. 68, 383–
424.

[22] Tseng, Y.S., Tzeng, C.C., Chiu, A.W., Lin, C.H., Won, S.J., Wu,
I.C. and Liu, H.S. (2003) Ha-ras overexpression mediated cell
apoptosis in the presence of 5-fluorouracil. Exp. Cell Res. 288,
403–414.

[23] Chang, M.J., Yu, W.D., Reyno, L.M., Modzelewski, R.A.,
Egorin, M.J., Erkmen, K., Vlock, D.R., Furmanski, P. and
Johnson, C.S. (1994) Potentiation by interleukin 1 alpha of
cisplatin and carboplatin antitumor activity: schedule-dependent
and pharmacokinetic effects in the RIF-1 tumor model. Cancer
Res. 54, 5380–5386.

[24] Kaufmann, S.H., Desnoyers, S., Ottaviano, Y., Davidson, N.E.
and Poirier, G.G. (1993) Specific proteolytic cleavage of poly(-
ADP-ribose) polymerase: an early marker of chemotherapy-
induced apoptosis. Cancer Res. 53, 3976–3985.

[25] Jayanthi, S., Deng, X., Noailles, P.A., Ladenheim, B. and Cadet,
J.L. (2004) Methamphetamine induces neuronal apoptosis via
cross-talks between endoplasmic reticulum and mitochondria-
dependent death cascades. FASEB J. 18, 238–251.

[26] Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., Iwamatsu,
A. and Nagata, S. (1998) A caspase-activated DNase that
degrades DNA during apoptosis, and its inhibitor ICAD. Nature
391, 43–50.

[27] Shi, Y. (2001) A structural view of mitochondria-mediated
apoptosis. Nat. Struct. Biol. 8, 394–401.
[28] Danial, N.N. and Korsmeyer, S.J. (2004) Cell death: critical
control points. Cell 116, 205–219.

[29] Hengartner, M.O. (2000) The biochemistry of apoptosis. Nature
407, 770–776.

[30] Desagher, S. and Martinou, J.C. (2000) Mitochondria as the
central control point of apoptosis. Trends Cell Biol. 10, 369–377.

[31] Sakahira, H., Enari, M. and Nagata, S. (1998) Cleavage of CAD
inhibitor in CAD activation and DNA degradation during
apoptosis. Nature 391, 96–99.

[32] Soldani, C., Lazze, M.C., Bottone, M.G., Tognon, G., Biggio-
gera, M., Pellicciari, C.E. and Scovassi, A.I. (2001) Poly(ADP-
ribose) polymerase cleavage during apoptosis: when and where?
Exp. Cell Res. 269, 193–201.

[33] Chen, D., Stetler, R.A., Cao, G., Pei, W., O’Horo, C., Yin, X.M.
and Chen, J. (2000) Characterization of the rat DNA fragmen-
tation factor 35/Inhibitor of caspase-activated DNase (Short
form). The endogenous inhibitor of caspase-dependent DNA
fragmentation in neuronal apoptosis. J. Biol. Chem. 275, 38508–
38517.

[34] Kuwana, T., Smith, J.J., Muzio, M., Dixit, V., Newmeyer, D.D.
and Kornbluth, S. (1998) Apoptosis induction by caspase-8 is
amplified through the mitochondrial release of cytochrome c. J.
Biol. Chem. 273, 16589–16594.

[35] Sartorius, U., Schmitz, I. and Krammer, P.H. (2001) Molecular
mechanisms of death-receptor-mediated apoptosis. Chembiochem
2, 20–29.

[36] Lee, H.J., Wang, C.J., Kuo, H.C., Chou, F.P., Jean, L.F. and
Tseng, T.H. (2005) Induction apoptosis of luteolin in human
hepatoma HepG2 cells involving mitochondria translocation of
Bax/Bak and activation of JNK. Toxicol. Appl. Pharmacol. 203,
124–131.


	Caspase-8 acts as a key upstream executor of mitochondria during justicidin A-induced apoptosis in human hepatoma cells
	Introduction
	Materials and methods
	Materials
	Cell cultures
	Cell viability assay
	Flow cytometric detection of phosphatidylserine exposure and cell cycle distribution
	Analysis of DNA fragmentation
	Measurement of  Delta  psi m
	Subcellular fractionation and Western blot analysis
	Animal study
	Statistical analysis

	Results
	Growth inhibition and apoptosis of justicidin A-treated cells
	Activation of caspases and involvement of mitochondria in justicidin A-induced apoptosis
	Involvement of Bcl-2 family in justicidin A-induced apoptosis
	Tumor growth in mice

	Discussion
	Acknowledgement
	Supplementary data
	References


