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Abstract  

 

Spinocerebellar ataxia (SCA) is an autosomal dominant and progressive 

neurodegenerative disease chartered by ataxia, parkinsonism, dementia 

and seizures. Although there remains lots unclarified mechanism in 

SCA17, it is believed that the mutation on the TATA box binding protein 

(TBP) is responsible for the disease. The CAG repeat expansion of TBP 

gene leads to the reduced solubility of polyglutamine (polyQ) TBP and 

induces aggregate formation. For TBP plays an important role in 

transcription initiation, the abnormal aggregate is believed to cause 

neuron degeneration especially in the cerebellar Purkinje cells. Cerebellar 

organotypic culture is a system which could provide research evidence on 

tissue level. In addition, the cerebellar organotypic culture could provide 

the normal interaction between Purkinje cells and the other cells in vitro. 

We have established this system to study and monitor the cerebellar cell 

development, neuron survival, Purkinje cell aggregate forming and death 

and for a drug screening platform. Trehalose is reported to prevent protein 

degradation and aggregate formation in several disease models, including 

Huntington’s diseases, Alzheimer's disease, SCA14 and some other 

neurodegenerative diseases caused by polyQ expansion. In this study, we 

evaluated the therapeutic effect of trehalose using SCA17 cerebellar 

organotypic culture system. Our results showed that TBP aggregation 

formed in the Purkinje cells at in vitro day 3 (DIV3) and became more 

obvious at DIV7 in the SCA17 cerebellar slice culture. Furthermore, we 

found that the TBP aggregation significant decreased in our slice culture 
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at DIV7 after treatment with trehalose. To identify the effect of trehalose 

in vivo, trehalose supplied in the drinking water of SCA17 transgenic 

mice was conducted. In the behavior test, we found that mice drinking 

trehalose ameliorated their hyperactivity and improved their coordination 

in rotarod test. Furthermore, we confirmed that the calbindin expression 

level was upregulated in the trehalose treatment mouse cerebellum. In 

addition, the cerebellum size in trehalose treatment mouse is bigger than 

that of vehicle treatment mouse. In our 4% trehalose treatment study, we 

found the gait behavior and motor coordination of SCA17 mice were 

rescued in the footprint and rotarod task, respectively. We also could 

observe the astrocyte gliosis performance was downregulated after 

trehalose treatment. However, the microglia cell was activated especially 

in transgenic trehalose treatment group. Furthermore, the MnSOD was 

also upregulated after trehalose treatment. These data suggest that 

trehalose could be a potential non-toxic treatment for SCA17. 

 

Key words：neurodegenerative diseases, spinocerebellar ataxia, trehalose, 

purkinje cell 
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Introduction 

 

Polyglutamine Diseases (PolyQ diseases) 

Polyglutamine diseases are hereditary neurodegenerative diseases 

caused by CAA/CAG repeat sequence excessive expansion. The 

abnormal expanded sequence will cause the polyglutamine (polyQ) 

overextended in the diseases coding gene and this abnormal protein is 

believed to result in disease’s pathology. Huntington’s disease (HD), 

Dentatorubral Pallidoluysian atrophy (DRPLA), Spinal and bulbar 

muscular atrophy (SBMA), and Spinocerebellar ataxias (SCA) are the 

subtypes of polyQ diseases (Orr and Zoghbi, 2000). 

 

Neuron cell degeneration is the major symptoms of polyQ diseases, 

but no exact pathogen and reason is identified until now. However, the 

abnormal expanded polyQ will make the protein misfolded and 

deregulated is believed to be one of the possible reasons. Besides, these 

abnormal polyQ proteins will be insoluble and accumulate in cell and 

make the cell died (Schaffar et al., 2004, Nagai et al., 2007). On the other 

hand, the polyQ-expanded protein will be cleaved by proteases, and the 

truncated protein will form the insoluble inclusion body in cell even 

easier than full-length protein. The inclusion body with mutant protein 

will compete with the normal protein and result in cell degeneration 

(Raspe et al., 2009). Furthermore, the polyQ-expanded protein was 

reported to enhance the abnormal interaction with transcription factor and 
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cause the neuron death (Okazawa, 2003). The imbalanced protein kinase 

function and mitochondrial efficiency lose are also reported to participate 

in the polyQ diseases pathology (Bence et al., 2001, Lin and Beal, 2006). 

 

Spinocerebellar Ataxia 

Spinocerebellar ataxia (SCA) is an autosomal dominant hereditary 

disease and mostly caused by abnormal polyQ-expansion and result in 

neurodegeneration, mainly in cerebellum and spinal cord. Furthermore, 

severe brain atrophy is also found in the progressive pathology of 

patients. 

 

Although the diseases-causing genes are different, gait instability and 

dystonia are the collective phenotype within patients. The neuron 

degeneration in cerebellum and spinal cord are the major reason for these 

apparent symptoms in SCA. However, the detail pathological progress 

and molecular cell signaling transduction pathway about SCA are still 

unclear. There are many patient family fall in the disease progress in 

various age and have diverse pathological phenotype. However, some 

people with abnormal extended polyQ sequence but never suffered from 

SCA (Schelhaas et al., 2000). Therefore, more effort is need to uncover 

the pathogenesis of these polyQ diseases. 

 

Spinocerebellar Ataxia type 17 

Spinocerebellar ataxia type 17 (SCA17) is a subtype of SCA. Ataxia, 

dementia, psychiatric symptoms, cognitive dysfunctions, spasticity, 
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dystonia, chorea and parkinsonism are the clinical symptoms of SCA17 

(Friedman et al., 2007). The TATA-box-binding-protein (TBP) gene 

localized on autosomal chromosome 6q27 (Koide et al., 1999), is a 

transcription factor and playing an essential role in three types of RNA 

polymerase (Gill and Tjian, 1992). SCA17 is reported to be caused by the 

CAG sequence repeat expanded in TBP and induce the neurodegeneration 

(Koide et al., 1999). Alter the length of N-terminal polyQ is reported to 

change the TBP normal function (Friedman et al., 2007). The length of 

polyQ in normal person was between 25~42 repeats (Gostout et al., 1993), 

and the clinical research has found that the person will suffer from the 

SCA17 if the polyQ repeats beyond the number (Nakamura et al., 2001).  

 

The onset of SCA17 patient is mostly after their middle age, however 

the truly beginning of SCA17 is depend on the length of polyQ and the 

sensitivity to the toxic protein (Fujigasaki et al., 2001). Cerebellar 

atrophy and Purkinje cell degeneration is the major clinical pathology of 

SCA17 (Friedman et al., 2007). Besides, there is gliosis in the brain of 

SCA17 patients (Toyoshima et al., 2004). 

 

Although it is still unclear about the pathogenesis of SCA17, it is 

reported that the abnormal expanded polyQ in TBP will enhance the 

interaction between the transcription factor like TFⅡB and TBP. The 

irregular interaction will compete with the interaction with normal TBP to 

induce the cell toxicity and neuron to degenerate (Friedman et al., 2007). 
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Organotypic Cerebellar Slice Culture 

Organotypic slice culture has been established in various regions like 

striatum, hippocampus, cortex, spinal cord and cerebellum for many years 

(Newell et al., 1995, Ostergaard et al., 1995, Krassioukov et al., 2002, 

Rytter et al., 2003, Birgbauer et al., 2004). To maintain the slice 

long-term survival and sufficient supply of oxygen, many experimental 

methods like “roller tube ” and “membrane interface” are tested. In 

“roller tube”, the slice is glued onto a glass coverslip and placed in a glass 

tube, the tube will rotated slowly. The slice will be exposed in medium 

for half of the time and exposed in oxygen in the other time (Gahwiler, 

1981a, b). The “membrane interface” culture method is cheaper and more 

convenient than the “roller tube” (Gahwiler, 1981a, Stoppini et al., 1991). 

The “membrane interface” culture used the semi-permeable porous 

membrane to maintain the organotypic slice absorb the nutrient from the 

medium, in the other hand, the membrane will keep the slice between 

atmosphere and medium to maintain the slice well survived (Bergold and 

Casaccia-Bonnefil, 1997). This arrangement allows the slices can be 

maintained in 6-well plates without any special rotation incubator. 

Therefore, the “membrane interface” slice culture method replaced the 

“roller-tube” method in recent years. 

 

During the cerebellum development, Bergmann glia cells play an 

important role for granule cells (Spacek, 1985, Grosche et al., 1999) and 

Purkinje cells to be the scaffold (Yamada et al., 2000, Lordkipanidze and 
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Dunaevsky, 2005). Furthermore, in Bergmann glia cell development, the 

glia morphogenesis will enhance the Purkinje cell synaptogenesis 

(Lippman et al., 2008). However, the oligodendrocytes are reported to be 

the central role in cerebellar circuits’ formation (Doretto et al., 2011). It is 

reported that the NG2-positive oligodendrocytes will participate in 

Purkinje cell and climbing fiber synapses formation (Lin et al., 2005). In 

addition, the cerebellar slice size was smaller and the Purkinje cell 

dendritic tree was also stunted in an oligodendrocyte-depleted condition. 

In addition, the glia cells were also reduced in this model (Mathis et al., 

2003, Collin et al., 2004).Therefore, to maintain the normal Purkinje cell 

development and functioning, it is necessary to keep the different types of 

cerebellar cells in correct interaction. 

 

Organotypic slice culture is a good semi-in vitro system to study the 

intracellular pathway leading neuron degeneration (Dusart et al., 1997, 

Ghoumari et al., 2000). In addition, nervous system slice culture was 

believed to be a powerful tool for the study of neural disorders as the 

slices maintain the neuron complex cell relationships and network that 

make the system closely represented the in vivo environment (Gahwiler, 

1981b, Stoppini et al., 1991). It is reported that organotypic slice culture 

is also a good system to study the cell interaction and functional change 

in neuron diseases such like multiple sclerosis (Davids et al., 2002, 

Birgbauer et al., 2004, Mulholland et al., 2005).  

 

Furthermore, to find the potential candidate drug to rescue the disease, 
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slice culture has also been set up for a drug screen platform because of 

the advantage of the well keeping 3D morphology(Meng et al., 2007). In 

recent study, the organotypic cerebellar slice culture has been used to 

study the interaction between the neuron stem cell and Purkinje cell in 

SCA model (Lu et al., 2011). There is also study reported that the slice 

culture is a good model to research the relationship between Purkinje cell 

and the exogenous compounds (Hill et al., 2009). Taking together, the 

organotypic slice culture is a nice system to be utilized turnover the 

SCA17 cell degeneration pathogenesis and find the potential drug to 

rescue the phenotype. 

 

Trehalose 

There are lots of neuron degeneration are attribute to misfolded 

protein which forming the aggregation, such as Alzheimer’s diseases 

(AD), Huntington’s diseases (HD), Parkinson’s diseases (PD) and Prion 

diseases (Beranger et al., 2008). In addition to abnormal aggregation, 

neuron inflammation is also reported a progressing clinical pathology in 

cancer, chronic diseases, nerve diseases and psychological diseases 

(Coussens et al., 2002, Laake et al., 2004, Mantovani, 2005).Therefore, 

choose the candidate drug which can anti-inflammation and inhibit the 

abnormal protein aggregation would be potential for rescue the chronic 

neurodegeneration diseases. 

 

Trehalose is a disaccharide which general exist in yeast, bacteria and 

invertebrate. There is reported that trehalose can help cell to resist the 
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stress like hydration, and oxidation by protecting the protein from 

denaturing (Chen and Haddad, 2004). 

 

In AD study, there is reported that trehalose can reduce the tau protein 

hyper -phosphorylation and neuron inflammation. Furthermore, the 

trehalose treatment can diminish the abnormal amyloid β (Aβ) protein 

forming aggregation and ameliorate the AD pathology in AD transgenic 

mouse model (Beranger et al., 2008). In addition, adding trehalose in 

drinking water significantly reduced the mutant huntingtin protein 

becoming the toxic inclusion body and rescued the motor function of HD 

transgenic mouse model (Tanaka et al., 2004).The study also point out 

treating the trehalose in SCA14 Purkinje primary cell helped the cell 

resume the normal function and morphology (Seki et al., 2010). Trehalose 

may play the role of chemical chaperone to ameliorate the toxic protein 

aggregating and rescue the disease pathology (Seki et al., 2010).We 

presume the ability of anti-aggregation and anti-inflammation of trehalose 

will be a positive candidate to cure SCA17, another polyQ 

neurodegeneration diseases. 
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Material and Method  

 

SCA17 transgenic mice 

The FVB/N transgenic mice with 109 poly-glutamine (109Q) 

expanded in human TBP (hTBP) driven by PCP2/L7 promoter, was 

established in our laboratory (Chang et al., 2011).Transgenic line 69 was 

utilized in this study and maintained by breeding heterozygous with 

FVB/N wild type mice (National Laboratory Animal Center, Taipei, 

Taiwan). The transgenic mice showed the phenotype of ataxia and 

Purkinje cell progress degeneration. In addition, the mice have the poor 

rotarod performance (Chang et al., 2011). We keep the mice in 

Individually Ventilated Cages (IVC) system under 12hours/12hours light 

and dark cycle. All the animal experiment was carried out in accordance 

with the guideline and approved by the National Taiwan Normal 

University Research Committee. 

 

Tail DNA extraction 

Mouse tail about 2 mm was chopped and incubated in Direct PCR 

buffer (Viagen Biotech, Los Angeles, USA) with 50μg/ml proteinase K at 

55°Cfor 5.5 hours for digestion of the protein. After the incubation, we 

extracted the DNA from the supernatant and stored in -20°C for further 

genotyping analysis. 
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Genotyping analysis 

For identifying the mice’s genotype, we use PCR analysis with 

primers, PL7-F (5’-TAT GGT GAG AGC AGA GAT GG-3’), TBP-3R 

(5’-CTGCTGGGACGT TGACTGCTG-3’), SRY-F’(5’-GAATA TTCCC 

GCTCT CCGGAG-3’) and SRY-R’(5’-ACCTG TTGTC CAGTT 

GCACT-3’). Under the condition of 95°C 1 minutes for denaturing, 68°C 

1 minutes with -0.1°C touch-down in each cycle for annealing and 72°C 

1.5 minutes for elongation for 35 cycles. After the PCR amplification, we 

load the sample in 2%agarose (Genetek Biosciences, Maharashtra, India) 

for checking the product. The 456 bps fragment product would be the 

amplified transgenic DNA. In addition, the male mice would also have 

the 294 bps DNA fragment amplification product of SRY gene. 

 

Organotypic Cerebellar Slice Culture 

The cerebellar slice culture protocol was modified from a previous 

report (Birgbauer et al., 2004). Briefly, the postnatal day 7 SCA17 

transgenic and wild type littermate mice were decapitated. The whole 

brain was taken out and transferred to ice-cold culture medium containing 

50% Basal Medium Eagle (Invitrogen, Grand Island, USA), 25% Hank’s 

Buffered Salt Solution (Invitrogen), 25% Horse Serum (Invitrogen), 

0.5%D-(+)-Glucose (Sigma, Saint Louis, U.S.A), 1mM GlutaMAXⅠ

(Invitrogen), and 1mM Penicillin/Streptomycin (Invitrogen). We separate 

the cerebellum from the other brain regions in ice-cold medium, and 

wrapped the hemisphere with low melting point agarose (Bio Basic, 
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Markham Ontario, Canada)in 1X D-PBS (Invitrogen). The cerebellum 

was then cut into 400μm parasagittal sections with Vibratome (VT1200S, 

Leica, Germany). To improve the survival rate of cerebellar slices, we 

also supplied 95% O2 injecting in buffer during the sectioning. We then 

transferred the slice to membrane of 30 mm culture plate inserts with 0.4 

μm pore size (Millipore, Billerica, USA) in six-well plates. The cerebellar 

slices were maintained in membranes with 1 ml culture medium at 37°C 

in an atmosphere of humidified 5%CO2. 

 

Wholemount Immunostaining 

The cultured cerebellum slices were fixed in 4%paraformaldehyde 

(Sigma) in PBS containing 0.2% triton X-100 for 30 minutes at room 

temperature. After fixing the slices, we washed the slice for 3 times with 

the PBS containing 2%triton X-100 for 15 minutes. The cerebellar slices 

with membranes will be cut and put into the 24-well-plate and incubated 

overnight in 10%horse serum (Invitrogen)with the PBS containing 0.2% 

triton X-100 at 4°C. The primary antibodies (Table 1) were incubated in 

5%horse serum with the PBS containing 0.1% tween-20 at 4°C for 2 days. 

We further enhanced the primary antibody binding efficiency by 

37°Cincubation for 30 minutes, and then wash the slice with the PBS 

containing 0.1% tween-20 at room temperature 15 minutes for three times. 

The cerebellum sections were then incubated with secondary antibodies 

(Table 2) in PBS with 5%horse serum in the PBS containing 0.1% 

tween-20 at 37°C for 2 hours. Afterwards, we washed the sections with 

PBS with 0.1% tween-20 at room temperature 15 minutes for three times. 
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Finally, the cerebellar slices were mounted on slides with mounting 

medium (SouthernBiotech, Los Angeles, U.S.A) for confocal (DMRE, 

TCS SP2, Leica) observation. 

 

Western Blot 

The mice were anaesthetized by 2.5%avertin (Sigma) intraperitonal 

injection (IP) and perfused with 0.9% sodium chloride(Sigma). The 

cerebellum was removed from the mouse brain and homogenized by 

sonicator (Microson XL 2000, Misonix, Newton, Australia) in RIPA 

solution[5 mM EDTA, 10 mM Tris (pH 7.4), 150mMNaCl, 0.1%SDS, 

1%DOS, 1% NP40] containing proteinase inhibitor (Thermo, Waltham, 

USA) and phosphatase inhibitor (Sigma)on ice. After 30 minutes reaction 

on ice, the protein was collected in supernatant after 30 minutes 

centrifugation at 12000 rpm. For protein quantification, we used the BCA 

Protein Assay Kit (Thermo) to measure the protein concentration of each 

sample. 

About 50 μg protein was loaded in each well for 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) in running buffer 

[192 mM Glycine (Sigma), 25 mM Tris Base (Bionovas, Ontario, Canada) 

in ddH2O] and transferred to polyvinylidenefluoride (PVDF, Millipore) 

membrane in transfer buffer [192 mM Glycine (Sigma), 25 mM Tris Base, 

20% v/v methanol (GeneStar, Shanghai, China) in ddH2O]. The 

polyvinylidene fluoride membrane was then incubated in 5% skim-milk 

for blocking the nonspecific epitopes binding for 2 hours. The primary 

antibodies (Table 1)were incubated in TBST contained 0.05% tween-20 at 
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4°Covernight. The membrane was washed with TBST contained 0.05% 

tween-20 five time for 15 minutes and then incubated with the 

horseradish peroxidase (HRP) labeling secondary antibodies (Table 2) in 

TBST contained 0.05% tween 20 for 2 hours. The membranes were 

finally washed by TBST contained 0.05% tween 20 before observing the 

signal images by LAS 3000 image system (LAS 3000, Fujifilm, Tokyo, 

Japan). 

 

in vitro Trehalose treatment 

At day in-vitro 1 (DIV1), we divided the cerebellar slices into6 

groups based on the result of genotyping: Wildtype-ddH2O, 

wildtype-trehalose (Gemfont Corporation, Taipei, Taiwan), 

wildtype-glucose (Sigma), SCA17-ddH2O, SCA17-trehalose and 

SCA17-glucose. We tested the effect of 100μM and 500 μM trehalose or 

glucose and the medium was changed twice a week. At DIV7, we fixed 

and whole mountimmuno stained the sections. Counting the both IP3R1 

and 1TBP18 double positive cells to estimate the trehalose efficiency in 

SCA17 cerebellar slice culture system. 

 

in vivo Trehalose treatment 

The 4% trehalose was added in ddH2O for treatment and ddH2O was 

used as vehicle. The treatment began at postnatal day 21 (P21) and 

finished at 20week old of mice. We changed the trehalose once a week 

and monitored the mouse body weight, drinking capacity and eating 

capacity every week. 
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Cryosections preparation 

The mouse was anesthetized with avertin (0.4 g/kg body weight). 

After anesthetization, the mouse was perfused with 0.9% sodium chloride 

and 4% paraformaldehyde (Sigma) in PBS. We will take up the whole 

mouse brain and then postfix the brain in 4% paraformaldehyde for 4 

hours at 4°C. The dehydration was performed in 10% sucrose (Bionovas) 

for 1 hour, 20% sucrose for 2 hours and 30% sucrose overnight. We 

removed the cerebellum from the whole brain and then the cerebellum 

was sectioned into 30 μm by LIECA CM3050 S cryostat-microtome 

(CM3050S , Leica) 

 

Fluorescent Immunohistochemistry 

The cerebellar sections were washed with TBST contain 2% triton 

X-100 10 minutes for three times and then the sections were incubated in 

0.1M boric acid (Bionovas) for 5 minutes. The sections were washed with 

TBST contain 2% triton X-100 10 minutes and we transferred the 

cerebellarslices to retrival buffer(DAKO, San Antonio, USA) at 80°Cfor 

30 minutes. After retrival, the slices were washed with TBST contain 2% 

triton X-100 10 minutes for three times. The slices were blocked with 

blocking buffer [10% horse serum and 1% BSA in TBST contain 0.2% 

triton X-100]for 2 hours at room temperature and then the cerebellum 

sections were incubated with primary antibodies (Table 1)in TBS contain 

5% horse serum and 1% BSA at 4°C overnight. After another wash with 

TBS three times for 10 minutes each time, the secondary antibodies 

(Table 2)in TBS was incubated with brain slices for 2 hours at 37°C. The 
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sections were washed with TBS 10 minutes for three times and then the 

DAPI was stained in TBS for 30 minutes at 37°C.Finally, the cerebellum 

sections were mounted on coating slide with mounting medium for 

confocal. 

 

Behavioral testing 

Rotarod 

We used the Rotarod (UGO BASILE, Italy) to measure the mouse 

coordination and motor function, The SCA17 transgenic mice and the 

wildtype littermates with trehalose and vehicle treatment were applied to 

the rotarod behavioral test every two weeks during the 4-to 20-week-old 

of age. Before the rotarod test, we handled the mouse for five days to let 

it be used to our hand to avoid the stress and then we trained the mouse 

for 4 days to learn and memorize the rotarod speed. After the training, we 

performed the handling for two days before each rotarod experiment. The 

rotarod condition is a fixed speed at 26 rpm for 200 seconds. If the mice 

fell down the machine or held the rod and spun around without attempt to 

walk anymore, we recorded the time of latency. The rotarod test 

performed with three trials per day for analysis. 

 

Locomotor 

We perform the locomotor experiment at the mouse age of 5,11and 

17 week. The SCA17 transgenic mice and the wild type littermates with 

trehalose or control treatment (n=13) were placed and monitored in an 
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open field black box (30 x 30 x 30 cm) for 600 seconds. We used the 

EthoVision system (Noldus, Nederland) to record and analyze the mouse 

total horizontal move distance, velocity and the path of moving during the 

experiment. 

 

Footprint 

We performed the footprint experiment with the mouse age at 9 and 

17 weeks, respectively. The SCA17 transgenic mice and their wild type 

littermates with trehalose or control treatment (n=13) were monitored by 

the CatWalk XT system (Noldus). First of all, we put the mouse on the 

glass plate of the CatWalk XT system to modify the intensity threshold 

for the correct footprint of the mouse. In the proceeding experiment, we 

let each mouse run for three times and record their footprint data. The 

data were analyzed by the CatWalk XT 9.1 software (Noldus). 

 

Homecage 

To analyze the common behavior of mouse, we performed the 

homecage behavior analysis with the mouse at age of 18 weeks. The 

SCA17 transgenic mice and their wild type littermates with trehalose or 

control treatment (n=4) were put in their home cage individually for 

overnight before the experiment. After the mouse got used to the cage 

they lived, we recorded the mouse behavior for 12 hours by the video 

camera at night. The video was analyzed and exported by the Home Cage 

Scan (Clever Sys. Inc., USA). 
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Statistical analysis    

All values are expressed as mean and the error bar are expressed as SEM. 

We use the independent T-test to determine the significance of difference 

between groups by SPSS analysis software. 
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Results 

No TBP aggregation was identified at postnatal day 7 

transgenic mouse cerebellum 

 

Our previous study has shown that polyQ-expanded TBP could form 

aggregation in transgenic mouse cerebellum (Chang et al., 2011). For 

TBP being an important transcription factor, it is believed the TBP 

abnormal aggregation would impair the transcriptional regulation and 

lead to neurodegeneration. Furthermore, we also detect the vacuoles in 

some Purkinje cell with aggregation (date not shown). The Purkinje cell 

vacuoles was believed to be a sign of degeneration (Vig et al., 2009). 

 

To develop a drug screen platform from SCA17 mice, we first 

identified the aggregation onset of the transgenic mice. TBP aggregations 

in cerebellum at postnatal day 7 (Figure 1A and 1B) and 14 (Figure 1C 

and 1D) were examined. However, we could not detect any aggregation at 

postnatal day 7, indicated that the aggregation occurred after postnatal 

day 7. We also could not observe TBP aggregation at postnatal day 14; 

however, there were higher 1TBP18 signals in transgenic Purkinje cells 

(Figure 1D). These data reveal that the onset of TBP aggregation 

formation is between postnatal after 14. 
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TBP aggregation in SCA17 cerebellar organotypic slice 

culture is formed between DIV1 and DIV3, and the 

aggregation progress with time 

 

We followed the condition for organotypic cerebellar slice culture 

protocol as previous reported (Zanjani et al., 2009). Briefly, we isolated 

the cerebella from the postnatal day 7 mice and sliced into 400 μm. After 

had cultured for 7 days, we fixed the slice and stained with antibodies 

(Figure 2A). 

 

First of all, we observed the day-in-vitro (DIV) 7 organotypic 

cerebellar culture slice has normal phenotype. The dendritic tree and axon 

of Purkinje cells kept on the correct place similar to their in vivo 

condition (Figures 2B - 2D) The molecular, granular, and Purkinje layers 

were all at the correct place as same as the fresh dissected cerebellar slice 

from mice. We also examined the TBP aggregation in organotypic 

cerebellar slice culture. To identify when the TBP aggregation was 

formed, we examined the 1TBP18 puncta in Purkinje cell on slice culture. 

As shown in the previous study, we found there was no significant 

difference between wildtype and transgenic mouse cerebella at postnatal 

day 7 (Figure 2A and 2B).  

 

On the DIV 1 culture, we also didn’t detect any positive 1TBP18 
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puncta in the Purkinje cells (Figures 2E-2F). However, the positive signal 

was observed at DIV 3 (Figures2G-2H). The results show that the TBP 

aggregation is serious at DIV 7 (Figures 2I-2J). In addition, we found 

there were more 1TBP18 puncta at DIV 7 than DIV 3 (Figures 2G-2J). 

These results indicate that the TBP aggregation is progressive in a 

time-dependent manner during the in vitro culture. 

 

Evaluation of Chinese herbs/compounds through the mouse 

cerebellar organotypic slice culture 

 

To identify the potential drugs to rescue the SCA17 pathology, we 

screened the Chinese herbs/compounds with our cerebellar organotypic 

slice culture. NH-005, NH-006, NH-016, NH-008-1, and trehalose were 

identified as potential herbs/compounds for which could reduce 

aggregation in polyQ SCA3/17 cell lines (personal communication). After 

treatment of NH-005 (100 μg/ml) or NH-006 (100 μg/ml), we found that 

the 1TBP18 puncta was significantly reduced in Purkinje cells 

(Figures3A-3B). For NH016 (100 μg/ml) and NH-008-1(100 and 500 

nM), there was no significant improvement in ameliorating of the 

1TBP18 puncta in Purkinje cells (Figures3C-3D). Trehalose has been 

shown to have a positive curative effect and prevented the abnormal 

protein forming aggregation in Huntington’s diseases (Tanaka et al., 2004) 

and SCA14 (Seki et al., 2010) models. We also found that the TBP 

aggregation in Purkinje cells was significantly reduced after 100 μM 

treatment (Figure 3E).  
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Evaluation of 2% trehalose treatment efficacy through the 

SCA17 transgenic mice 

 

To identify the trehalose efficacy in vivo, we applied 2% trehalose 

into mouse drinking water during the treatment. The mouse body weight 

was monitored every week. The results showed that there are no 

significant differences between treatment and vehicle (Figure 4A). The 

first rota-rod accelerating condition (4-30 rpm) couldn’t distinguish the 

treatment and vehicle groups (Figure 4B), we changed the rota-rod 

condition to a fixed speed (26 rpm). We found that the trehalose treatment 

group performed better than vehicle treatment group in this condition 

(Figure 4C).  

 

We sacrificed the mice for pathological examination after trehalose 

treatment for 17 weeks. First of all, we found that the size of cerebellum 

was larger in treatment group (Figure 4D), indicated that the trehalose 

treatment might rescue the SCA17 cerebellum atrophy phenotype. We 

also confirmed the trehalose positive effect in western blot analysis. A 

significant resume in calbindin expression was identified in trehalose 

treatment group (Figure 4E).The Purkinje cell morphology and IP3R1 

intensity was improved after 2% trehalose treatment. We could observe 

better Purkinje cells dendritic tree morphology in treatment group than 

vehicle group (Figure 4F). However, we found that the SCA17 transgenic 
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mouse cerebellar Purkinje cells TBP aggregation was not significantly 

affected after trehalose treatment (Figure 4F). However, we could detect 

the astrocytes gliosis was reduced after 2% trehalose treatment (Figure 

4F). 

 

Evaluation of 4%trehalose treatment efficacy through the 

SCA17 transgenic mice 

 

Since the 2% trehalose could not reduce the abnormal TBP 

aggregation in vivo, we performed the 4% trehalose treatment for SCA17 

mice. First of all, we checked the 4% trehalose stability within our 

treatment condition by HPLC analysis (Figure 5A). To understand 

whether the high concentration trehalose would harm the mice, we 

monitor the blood glucose during treatment. The results showed that the 

growth of body weight had no significant difference between treatment 

and vehicle group (Figure 5B). Furthermore, the blood glucose were also 

keep in the normal level (Figure 5C), indicated that the 4% trehalose 

would not harm the mice. After 4% trehalose treatment for 4 month, we 

could observed the SCA17 mouse cerebellum weight was significantly 

rescued (Figure 5D), indicated that the trehalose could ameliorate the 

SCA17 cerebellum atrophy performance. To confirm this result, we 

perform the western blot with the antibody of Purkinje cell marker, 

calbindin. We could also observe the calbindin level was slightly rescued 

after 4% trehalose treatment (Figure 5E). 
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In our behavior test, we performed the rota-rod, locomotor, footprint 

and homecage analyses (Figure 6A). There was only slight improvement 

in the locomotor (Figure 6B) and rota-rod (Figure 6C) in the treated 

SCA17 mice, indicated that the trehalose treatment might resume ataxia 

performance in SCA17 transgenic mice. 

 

In our footprint experiment, we could observe that the footprint of 

transgenic vehicle group was disordered. After drinking 4% trehalose, the 

footprint resume to a more regular pattern (Figure 6D). As reported in the 

previous study, Lurcher mice whose Purkinje cell degeneration caused by 

spontaneous mutation had altered footprint behaviors in “Run duration”, 

“Step Sequence Regularity Index”, “Bass of Support Hind Paw Mean”, 

“Print Position”, “Swing Speed” and “Stride Length” (Cendelin et al., 

2010). We also examined the same parameter in our SCA17 transgenic 

mice and found the similar result (Figure 6). Figures 7E - 7N show the 

quantification of footprint analysis. The SCA17 transgenic mice showed a 

larger hind-paw distances than wildtype mice, which is consistent with 

the previous report that hind-paw distance would be enlarged in 

coordination deficient mice (Hamers et al., 2001, Cendelin et al., 2010). 

However, after 4% trehalose treatment, the SCA17 transgenic mouse hind 

paw distance was decreased to a similar level of wildtype mice. In 

addition, the print position measures the footprint distances between hind 

paw and front paw in the same side. We observed the transgenic mice had 

lager distances than that of wildtype group, indicating that the transgenic 

mice presented ataxia behavior. However, after trehalose treatment, we 
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found the print position was decreased. Furthermore, the swing speed and 

stride length were also rescued by 4% trehalose treatment. 

 

Evaluation the neuronal pathology on 4%trehalose 

treatment in SCA17 transgenic mice 

 

After 4% trehalose treatment, we observed the transgenic cerebellar 

size was larger than that of vehicle treatment (Figure 7A), indicating the 

trehalose might protect against the cerebellar atrophy. Furthermore, the 

Purkinje cells showed the better dendritic morphology in the high 

magnification view (Figure 7B). We also confirm this result by 

immunohistochemical (IHC) staining with calbindin antibody. The data 

showed that the Purkinje cell not only had better dendritic performance, 

but also had larger cell soma (Figure 7C), which indicated that the 

trehalose had protective effect for SCA17 transgenic mice.  

 

Astrocyte gliosis is well known as one of major neurodegenerative 

markers (Friedman et al., 2007), we also use GFAP antibody to evaluate 

the trehalose effect in SCA17 transgenic mice. As our anticipation, after 

4% trehalose treatment, less astrocyte gliosis was identified no matter in 

Purkinje layer, granular layer (Figure 7D) or in deep cerebellar nuclei 

(DCN) (Figure 7E). The IHC analysis also confirmed this result. There 

was less astrocyte activated in the cerebellum (Figure 7F). Furthermore, 

less gliosis signal was also detected in the lobes (Figure 7G) and in DCN 

(Figure 7H). However, we observed that the microglia cells detected by 
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Iba1 antibody were significantly activated after 4% trehalose treatment in 

SCA17 transgenic mice (Figures7I-7J). The Bergman glia cell was also 

detected by S100 antibody, however we could only observe the S100 

expression signal was reduced in transgenic mice no matter in treatment 

or in vehicle group (Figure 7K). 

 

Evaluation the molecular effect of 4% trehalose treatment in 

SCA17 transgenic mice 

 

We also checked the trehalose molecular effect in SCA17 transgenic 

mice. HSP70 is considered the major chaperon protein and played the 

important neuron protection role in neuron degenerative diseases 

(Friedman et al., 2007, Huang et al., 2011). However, we could not detect 

significant differences between in wildtype and transgenic groups (Figure 

8A). Although the p-ERK was upregulated in transgenic mice, the 

trehalose could not affect the expression level (Figure 8A). The levels of 

GAD67, β-catenin and pp38 were also not effected after trehalose 

treatment (Figures 8B-8C). However, the MnSOD was resumed to the 

normal expression level after trehalose treatment, which indicated that the 

trehalose might ameliorate the oxidative stress in SCA17 transgenic mice. 

Furthermore, it is interesting that the p-JNK was downregulated in 

wildtype mice after trehalose treatment; nevertheless, trehalose treatment 

upregulated the p-JNK protein expression in SCA17 transgenic mice 

(Figure 8D). 
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Discussion 

SCA17 is an autosomal dominant hereditary disease caused by 

abnormal amplification of CAG repeats in TBP gene and resulted in 

neuron degeneration. Although the molecular pathogenesis of SCA17 had 

not been clarified yet, cerebellar atrophy, Purkinje cell loss and TBP 

nuclear aggregation were obvious markers in SCA17 patient (Nakamura 

et al., 2001). In our previous study, we could also detect the TBP puncta, 

ataxia and neuronal degeneration in TBP-109Q transgenic mice (Chang et 

al., 2011). In this study, we further found the TBP puncta was 

co-localized with 1C2 and ubiquitin (data not show) which were reported 

to be detected in SCA17 patients. These results confirmed that the 

abnormal TBP puncta detected in the SCA17 transgenic mice was the 

aggregation. Furthermore, the presence of vacuoles was reported as a sign 

of degeneration of cells of SCA1 and tottering mice (Florez-McClure et 

al., 2004, Vig et al., 2006, Hoebeek et al., 2008, Vig et al., 2009). We 

could also found vacuoles within the Purkinje cells with intensive 

aggregation in our transgenic mice (data not show). These observations 

reveal that Our SCA17 transgenic mice represent anideal animal model in 

studying pathogenesis or screening potential treatments for polyQ 

mediated SCA diseases. 

 

To identify potential treatments for SCA17, an in vitro model may 

be established for a screening platform. However, the Purkinje cell was 

difficult to be maintained in its normal function and morphology without 

co-culture with its surrounding glia cell. For example, the Bergmann glia 
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cell plays the role of scaffold in development stage of Purkinje cell 

(Lippman et al., 2008).Therefore, we tried to set up the organotypic 

cerebellar slice culture for the drug screen platform. The slice culture 

maintained the normal cerebellar neuronal morphology at DIV7, and we 

could observe the TBP aggregation was formed in SCA17 transgenic 

slice between DIV1 and DIV3, indicating that the slice culture could be a 

suitable system to screen the potential drugs for SCA17. 

 

Trehalose is analpha-linked disaccharide synthesized by fungi, 

plants and invertebrates. There were reports suggested that the trehalose 

had low toxicity and could help the cell to protect against the stress 

threatening the cell survival (Chen and Haddad, 2004). In addition, the 

trehalose had been reported to have potential in rescuing neuron 

pathology, molecular dysfunction and abnormal behavior in lots of 

neurodegenerative diseases, such as AD (Beranger et al., 2008), prion 

disease (Aguib et al., 2009), HD (Tanaka et al., 2004) and SCA14 (Seki 

et al., 2010). After applying the trehalose in slice culture at DIV1, we 

could observed the TBP aggregation was significantly reduced at DIV7, 

indicating that the trehalose might prevent the aggregation formation.  

 

Previous study reported that trehalose might play a role as a 

chaperon to prevent the abnormal protein aggregation formation (Tanaka 

et al., 2004, Seki et al., 2010). To further understand whether trehalose 

coulddecrease TBP aggregation and rescue the SCA17 pathology in vivo, 

we applied the 2% and 4% trehalose, respectively, into mouse drinking 
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water. The trehalose was stable during our treatment condition; however, 

we could not observe significant rescuing effect of trehalose determined 

by rota-rod test. It could be that the first rota-rod condition was too strict 

to distinguish treatment group from vehicle group. After modifying the 

rota-rod condition from 4-30 rpm accelerated speed to 26 rpm fixed speed, 

we could observe the differences between these two groups. In addition, 

the footprint of trehalose treated mice had better performance than 

vehicle treated mice. These data reveal that although trehalose had some 

neuron protective effect on SCA17 mice, which could only be detected by 

a mild analysis protocol. 

 

In our previous study, hyperactivity was reported to be one of 

behavior markers in our SCA17 transgenic mice (Chang et al., 2011). In 

the present study, we could also observe that after 4% trehalose treatment, 

the total distance analyzed by locomotor was slightly reduced in 

transgenic group, indicating that trehalose could ameliorate the 

hyperactivity of SCA17 mice.  

 

From the in vivo study, we found the dendritic tree of transgenic 

mouse Purkinje cell had better performance after trehalose treatment, 

however, the TBP aggregation was not significantly reduced as the results 

found in slice culture. Trehalase is suspected to be the reason to cause the 

effect difference between mice and slice culture. Trehalase is the enzyme 

to digest trehalose into two glucoses. It was reported that the trehalase is 

present in the intestine of mammals including rabbit (Ruf et al., 1990), rat 
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(Oesterreicher et al., 1998), mouse (Oesterreicher et al., 2001) and human 

(Ishihara et al., 1997), which could digest the trehalose drunk by SCA17 

transgenic mice. It might reduce the trehalose concentration and explain 

why there was no significant improvement in transgenic mice identified 

from both the rota-rod and locomotor test after trehalose treatment. 

Although the glucoses also showed some positive effect on HD mice 

(Tanaka et al., 2004), the trehalose was much better than it (Tanaka et al., 

2004, Kruger et al., 2011). Therefore, finding a compound with similar 

potent as trehalose and also working as a trehalase inhibitor might be a 

potential strategy to solve the polyQ aggregation. For example, 

validamycin A is the trehalase inhibitor and was used to improve the 

trehalose biosynthesis (Xue et al., 2005) and accumulation (Lopez et al., 

2009). It would be interesting to see whether the validamycin A could 

inhibit the abnormal TBP aggregation. 

 

In this study, we also monitor the trehalose drinking level (data not 

show). We found that the mice drunk more water than vehicle treatment. 

However, the blood glucose did not change after treatment, indicated that 

the trehalose treatment did not affect the blood glucose and harm the mice. 

The interesting thing is that we found the blood glucose was significantly 

reduced in transgenic group at 5-week-old. Although there was no report 

pointed out the blood glucose was affected in SCA patients, the 

hypometabolism phenomena was observed by Positron emission 

tomography (PET) with 2-[fluorine18]-fluoro-2-deoxy-D-glucose in 

cerebellum of SCA patients (Wang et al., 2007), indicating that the 
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dysfunction of energy metabolism might be another pathology of SCAs. 

However, at this moment, we do not know whetherour SCA17 mice have 

any defect in energy metabolism and the trehalose treatment would have 

any effect on the hypometabolism phenomena of cerebellum or not. 

 

Gliosis is observed as a neuron degenerative marker in SCA17 mice 

(Friedman et al., 2007, Chang et al., 2011). In this study, we could also 

detect the astrocytes was highly activated in the transgenic mice. After 

trehalose treatment, we found the activation of astrocytes was reduced, 

indicating that the trehalose could delay the neuron degeneration. 

However, we could also detect the microglia cells were activated after 

trehalose treatment, especially in SCA17 transgenic mice. The microglia 

contributed about 12% cells in whole brain and was known as biosensors 

in the central nervous system (Penfield, 1932). However, it had not been 

clarified yet that the activation of microglia would exert positive or 

negative effect on neurons (Li et al., 2007). For example, many studies 

reported that activating microglia cells would increase neuronal cell death 

through releasing glutamate, nitric oxide and toxic cytokines (Chao et al., 

1992, Piani et al., 1992, Viviani et al., 1998). In contrast, some evidences 

indicated activating microglia cells could secrettrophic factor which is 

good for neurons, such as neurotrophins (Elkabes et al., 1996) and 

transforming growth factor-β (TGF-β) (Lehrmann et al., 1998). In a 

previous study, the astrocyte gliosis upregulated and neurodegeneration 

phenomena were observed when the hippocampal slice was cultured in 

microglia cell-depleted condition (Montero et al., 2009), indicating a 
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protective role of microglia cell in this system. In this study, we could 

also observe the astrocytes activation was reduced and microglia cells 

activation was upregulated.  

 

Taking together, our data suggest that the trehalose treatment has 

positive effect in our neuronal pathology of SCA17 transgenic mice. This 

natural disaccharide might have potential to delay the polyQ diseases. 

However, adding the trehalase inhibitor with trehalose might be a more 

efficiency way than trehalose only for the treatment. 
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Table 1. Primary antibody list in this study 

 

Protein Manufacturer Titer Source MW (kDa) 

Calbindin Sigma 1:1000 mouse 28 

Calbindin Sigma 1:1000 rabbit 28 

IP3R1 SantaCruz 1:1000 goat 313 

1TBP18 QED 1:30000 mouse  

GFAP Millipore 1:1000 mouse 51 

S100 Millipore 1:1000 mouse 10 

Iba1 Wako Pure 

Chemical 

1:1000 rabbit 17 

β-actin Millipore 1:1000 mouse 42 

MoSOD Cell signaling 1:1000 mouse 24 

pp38 Cell signaling 1:1000 rabbit 38 

GAD67 Millipore 1:1000 rabbit 65 

p-ERK (Thr202/Tyr204) Cell signaling 1:1000 rabbit 42/44 

ERK 1/2 Cell signaling 1:1000 rabbit 42/44 

HSP70 Cell signaling 1:1000 rabbit 72 

p-JNK (Thr183/Tyr185) Cell signaling 1:1000 rabbit 46/54 

JNK Cell signaling 1:1000 rabbit 46/54 
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Table 2. Secondary antibody list in this study 

 

Antibody Manufacturer Titer Source 

anti-mouse IgG, Alexa Fluor 488 Invitrogen 1:500 donkey 

anti-mouse IgG, Alexa Fluor 555 Invitrogen 1:500 donkey 

anti-rabbit IgG, Alexa Fluor 555 Invitrogen 1:500 donkey 

anti-goat IgG, Alexa Fluor 488 Invitrogen 1:500 donkey 

anti-goat IgG, Alexa Fluor 555 Invitrogen 1:500 donkey 

Biotinylated Goat Anti-Mouse IgG Vector 1:200 goat 

Biotinylated Goat Anti-Rabbit IgG  Vector 1:200 goat 

anti-rabbit IgG, HRP-linked  Cell Signaling 1:10000 goat 

anti-mouse IgG, HRP-linked Cell Signaling 1:10000 goat 
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Figure 1.  

No TBP aggregation was identified at postnatal day 7 transgenic mouse 

cerebellum.  

The nuclear aggregation was analyzed by immunofluorescent staining 

with IP3R1 and 1TBP18 antibodies on postnatal day 7 (P7) (A-B), and 14 

(P14) (C-D) Wildtype and transgenic mice. We could not detect any 

1TBP18 aggregaion in neither wildtype nor transgenic cerebella at these 

stages. However, there was high expression signal of 1TBP18 in 

transgenic cerebellum at p14. Scale bar = 150 μm (A-B), 40 μm (C-D) 
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Figure 2. 

The TBP aggregation was identified in SCA17 transgenic cerebellar slice 

culture. 

(A) The time line of cerebellar slice culture in this study. (B-D) The 

cerebellar slice kept normal morphology during the culture period. (E-J) 

The TBP aggregation formation was observed between DIV1 and DIV3 

in transgenic slice culture, and no aggregation was identified in wildtype 

slice. Scale bar = 600 μm (B), 150 μm (C), 40 μm (E-F), 8 μm (G-H), 4 

μm (I), 10 μm (J)  
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Figure 3. 

Screen potential herbs/compounds for SCA17 using organotypic 

cerebellar slice culture system.1TBP18 aggregation was significatly 

decreased after 100 μM trehalose(A), 100 μg/ml NH005 (B), or NH006 

(C) treatments.No significant difference in 1TBP18 aggregation was 

identified after 100 nM NH008-1(D) ,and 100 μg/ml NH016(E) 

treatments. Scale bar = 50 μm (A, left), 10 μm (A, right), 75 μm (B-E), 40 

μm (D)  
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Figure 4. 

The results of a pilot study in which 2% trehalose was applied to the 

SCA17 transgenic mice. (A) The bodyweight between vehicle and 

treatment groupsshowed no significant difference. (B) There was no 

significant difference identified between transgenic mice treated with 

trehalose or vehicle in a 4-30 rpm rota-rod task. (C) Under a 26 rpm fixed 

rota-rod condition, the different performance was identified between 

transgenic mice treated with vehicle and trehalose. (D) The cerebellar size 

of transgenic mice treated with trehalose was larger than that of vehicle 

treatment. (E) The calbindin expression level determined by western blot 

analysis showed significantly increased in transgenic mice with trehalose 

treatment than vehicle treatment. (F) The Purkinje cell showed higher 

dendritic density (arrow)and IP3R1 staining intensity after trehalose 

treatment than vehicle treatment; nevertheless, the TBP aggregation was  

not significantly altered after different treatments (arrow head).With 

GFAP staining, we  observed the gliosis was slightly decreased after 2％ 

trehalose treatment. Scale bar = 600 μm (D), 50 μm (F, left), 150 μm (F, 

middle and right) 
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Figure 5.  

Evaluation of the effect of 4% trehalose treatment on SCA17 transgenic 

mice. (A)The 4% trehalose solution was stable for one week during the 

animal application identified by HPLC analysis and quantification. Arrow, 

the trehalose peak.(B) The mouse body weight showed no differences 

between these groups. (C) The mouse blood glucose were not altered 

after 4% trehalose treatment. (D) The cerebellar weight was partial 

recovered after 4% trehalose treatment. (E) The calbindin expression was 

slightly rescued after 4% trehalose treatment.(intepedent t-test; *, p<0.05; 

**, p<0.005; ***, p<0.001) 
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Figure 6. 

Evaluation of the neurobehavior effect of 4% trehalose treatment on 

SCA17 transgenic mice. (A) The time line of behavior test in this study. 

(B) The total distance analysis by locomotor behavior test. The 

hyperactivity performance of SCA17 transgenic mice was not rescued 

after treatment. (C) The rota-rod performance was slightly rescued after 

4% trehalose treatment. (D-N) The footprint behavior test showed that the 

4% trehalose partial rescued the footprint phenotype of SCA17 transgenic 

mice. (independent t-test; *, p<0.05; **, p<0.005; ***, p<0.001) 
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Figure 7 

Evaluation of the neuropathological effect of 4%trehalose treatment on 

SCA17 transgenic mice. (A) The cerebellar atrophy was slightly rescued 

after 4% trehalose treatment. (B) The Purkinje cell dendritic tree showed 

more complex (arrow) in trehalose treatment group than vehicle treatment 

group. (C) The immunohistochemical staining of calbindin showed that 

the dendritic tree performance of Purkinje cell (arrow) was rescued after 

4% trehalose treatment. (D) The gliosis was determined by GFAP 

staining (arrow) to show the Bergmann gliosis (arrow head) occurred in 

Purkinje cell layer. (E) The 4% trehalose treatment also reduced the 

gliosis in deep cerebellum nuclei (DCN).(F-H) The effect of trehalose in 

inhibiting gliosis was also identified by immunohistochemical staining, 

showed the astrocyte (arrow in H) and Bergmann glia (arrow in G) were 

significantly reduced. (I-J) Microglia cells (arrow) were activated after 

4% trehalose treatment. (K) The Bergman glia in cerebellum stained by 

S100 showed no differences between vehicle-or trehalose-treated groups. 

Scale bar = 600 μm (A), 75μm (B-E), 150 μm (G-H and J-K), 600 μm (F 

and I)  
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Figure 8. 

The molecular effect of 4% trehalose treatment on SCA17 transgenic 

mice. (A-B) The western blot analysis at 20-week-old mice, the higher 

expression of p-ERK in SCA17 transgenic mice was observed, however, 

trehalose treatment did not reduced the expression level. No difference 

was identified in the HSP70, GAD67 and β-catenin expression level sin 

different groups. (C) The MoSOD level was upregulated after trehalose 

treatment in transgenic mice. (D) The pJNK was downregulated in 

trehalose treated wildtype mice, however it was upregulated in treated 

transgenic mice. 
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